. Medical and Hospital News .




.
NANO TECH
Syracuse University researchers use nanotechnology to harness the power of fireflies
by Judy Holmes
Syracuse NY (SPX) Jun 19, 2012

Nanorods created with firefly enzymes glow orange. The custom, quantum nanorods are created in the laboratory of Mathew Maye, assistant professor of chemistry.

What do fireflies, nanorods, and Christmas lights have in common? Someday, consumers may be able to purchase multicolor strings of light that don't need electricity or batteries to glow. Scientists at Syracuse University found a new way to harness the natural light produced by fireflies (called bioluminescence) using nanoscience. Their breakthrough produces a system that is 20 to 30 times more efficient than those produced during previous experiments.

It's all about the size and structure of the custom, quantum nanorods, which are produced in the laboratory by Mathew Maye, assistant professor of chemistry in SU's College of Arts and Sciences; and Rebeka Alam, a chemistry Ph.D. candidate. Maye is also a member of the Syracuse Biomaterials Institute.

"Firefly light is one of nature's best examples of bioluminescence," Maye says. "The light is extremely bright and efficient. We've found a new way to harness biology for non-biological applications by manipulating the interface between the biological and non-biological components."

Their work, "Designing Quantum Rods for Optimized Energy Transfer with Firefly Luciferase Enzymes," was published online May 23 in Nano Letters and is forthcoming in print. Nano Letters is a premier journal of the American Chemical Society and one of the highest rated journals in the nanoscience field. Collaborating on the research were Professor Bruce Branchini and Danielle Fontaine, both from Connecticut College.

Fireflies produce light through a chemical reaction between luciferin and it's counterpart, the enzyme luciferase. In Maye's laboratory, the enzyme is attached to the nanorod's surface; luciferin, which is added later, serves as the fuel. The energy that is released when the fuel and the enzyme interact is transferred to the nanorods, causing them to glow. The process is called Bioluminescence Resonance Energy Transfer (BRET).

"The trick to increasing the efficiency of the system is to decrease the distance between the enzyme and the surface of the rod and to optimize the rod's architecture," Maye says. "We designed a way to chemically attach, genetically manipulated luciferase enzymes directly to the surface of the nanorod." Maye's collaborators at Connecticut College provided the genetically manipulated luciferase enzyme.

The nanorods are composed of an outer shell of cadmium sulfide and an inner core of cadmium seleneide. Both are semiconductor metals. Manipulating the size of the core, and the length of the rod, alters the color of the light that is produced. The colors produced in the laboratory are not possible for fireflies. Maye's nanorods glow green, orange, and red.

Fireflies naturally emit a yellowish glow. The efficiency of the system is measured on a BRET scale. The researchers found their most efficient rods (BRET scale of 44) occurred for a special rod architecture (called rod-in-rod) that emitted light in the near-infrared light range. Infrared light has longer wavelengths than visible light and is invisible to the eye.

Infrared illumination is important for such things as night vision goggles, telescopes, cameras, and medical imaging.

Maye's and Alam's firefly-conjugated nanorods currently exist only in their chemistry laboratory. Additional research is ongoing to develop methods of sustaining the chemical reaction-and energy transfer-for longer periods of time and to "scale-up" the system.

Maye believes the system holds the most promise for future technologies that that will convert chemical energy directly to light; however, the idea of glowing nanorods substituting for LED lights is not the stuff of science fiction.

"The nanorods are made of the same materials used in computer chips, solar panels, and LED lights," Maye says. "It's conceivable that someday firefly-coated nanorods could be inserted into LED-type lights that you don't have to plug in."

Related Links
Syracuse University
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries




.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



NANO TECH
Stanford engineers perfecting carbon nanotubes for highly energy-efficient computing
Stanford CA (SPX) Jun 19, 2012
Energy efficiency is the most significant challenge standing in the way of continued miniaturization of electronic systems, and miniaturization is the principal driver of the semiconductor industry. "As we approach the ultimate limits of Moore's Law, however, silicon will have to be replaced in order to miniaturize further," said Jeffrey Bokor, deputy director for science at the Molecular Foundr ... read more


NANO TECH
Afghan quake rescue operation declared over

Japan to develop drones to monitor radiation

Study predicts imminent irreversible planetary collapse

Japan agency sorry for comparing radiation to wife

NANO TECH
GPS being used as weather forecast tool

Apple fends off Android challenge with maps, Siri

Boeing, Raytheon and Harris to Pursue GPS Control Segment Sustainment Contract

Revamped Google maps goes offline for mobile

NANO TECH
More people, more environmental stress

How infectious disease may have shaped human origins

Homo heidelbergensis was only slightly taller than the Neanderthal

Fossil discovery sheds new light on evolutionary history of higher primates

NANO TECH
Herbivores select on floral architecture in a South African bird-pollinated plant

Loss of biodiversity increasingly threatens human well-being

Brazil picks up the baton for struggling UN summit

Stealing life's building blocks

NANO TECH
HIV may have returned in 'cured' patient: scientists

Mama Portia dishes out help for AIDS orphans

Revealed: Secret of HIV's natural born killers

New study shows why swine flu virus develops drug resistance

NANO TECH
Dalai Lama forms unlikely double act on UK tour

China urges eurozone cooperation to resolve crisis

China hit by another self-immolation: state media

China boycotts religious event over Tibet presence

NANO TECH
Incidence, types of marine piracy studied

Somali Islamists fire on foreign warships

Iran navy saves US freighter from pirates: report

Jailing of marines hitting anti-piracy efforts: Italy

NANO TECH
Rio+20: Relief but few smiles as deal forged on eve of summit

Walker's World: It's France, not Greece

CEOs pledge sustainability, urge 'green revolution'

India and Russia boost IMF crisis firewall


Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement