Medical and Hospital News  
STELLAR CHEMISTRY
Taking the temperature of dark matter
by Staff Writers
Davis CA (SPX) Jan 17, 2020

This image from the Hubble Space Telescope shows lensing of distant galaxies by gravity. UC Davis astronomers are using this phenomenon to learn more about the properties of dark matter.

Warm, cold, just right? Physicists at the University of California, Davis are taking the temperature of dark matter, the mysterious substance that makes up about a quarter of our universe.

We have very little idea of what dark matter is and physicists have yet to detect a dark matter particle. But we do know that the gravity of clumps of dark matter can distort light from distant objects. Chris Fassnacht, a physics professor at UC Davis and colleagues are using this distortion, called gravitational lensing, to learn more about the properties of dark matter.

The standard model for dark matter is that it is 'cold,' meaning that the particles move slowly compared to the speed of light, Fassnacht said. This is also tied to the mass of dark matter particles. The lower the mass of the particle, the 'warmer' it is and the faster it will move.

The model of cold (more massive) dark matter holds at very large scales, Fassnacht said, but doesn't work so well on the scale of individual galaxies. That's led to other models including 'warm' dark matter with lighter, faster-moving particles. 'Hot' dark matter with particles moving close to the speed of light has been ruled out by observations.

Former UC Davis graduate student Jen-Wei Hsueh, Fassnacht and colleagues used gravitational lensing to put a limit on the warmth and therefore the mass of dark matter. They measured the brightness of seven distant gravitationally lensed quasars to look for changes caused by additional intervening blobs of dark matter and used these results to measure the size of these dark matter lenses.

If dark matter particles are lighter, warmer and more rapidly-moving, then they will not form structures below a certain size, Fassnacht said.

"Below a certain size, they would just get smeared out," he said.

The results put a lower limit on the mass of a potential dark matter particle while not ruling out cold dark matter, he said. The team's results represent a major improvement over a previous analysis, from 2002, and are comparable to recent results from a team at UCLA.

Fassnacht hopes to continue adding lensed objects to the survey to improve the statistical accuracy.

"We need to look at about 50 objects to get a good constraint on how warm dark matter can be," he said.

Research paper


Related Links
University of California - Davis
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


STELLAR CHEMISTRY
Connecting the dots in the sky could shed new light on dark matter
Stanford CA (SPX) Jan 14, 2020
Astrophysicists have come a step closer to understanding the origin of a faint glow of gamma rays covering the night sky. They found that this light is brighter in regions that contain a lot of matter and dimmer where matter is sparser - a correlation that could help them narrow down the properties of exotic astrophysical objects and invisible dark matter. The glow, known as unresolved gamma-ray background, stems from sources that are so faint and far away that researchers can't identify them indi ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Living in tents, thousands of Puerto Rico's earthquake survivors wait for relief

Huge sinkhole swallows bus, kills six in China

Myanmar's Suu Kyi visits China border state as Xi visit looms

Navy brings emergency beer to fire-hit Aussie town

STELLAR CHEMISTRY
FAA warns military training exercise could jam GPS signals in southeast, Caribbean

China Focus: China to complete Beidou-3 satellite system in 2020

China's Beidou navigation system to provide unique services

From airport approaches to eCall in cars in 10 years with EGNOS

STELLAR CHEMISTRY
Neanderthals had the teeth to eat hard plants

Tool-making Neanderthals dove for the perfect clam shell

Titi monkeys support 'male services' theory for mammalian pair bonding

Ancient hominid disease defenses contribute to adaptation of modern humans

STELLAR CHEMISTRY
Tiny Seychelles island coaxes bird back from brink

Giant squid's genome sequenced for the first time

Wolf puppies unexpectedly play fetch with researchers

Trophy hunt of protected Alpine ibex sparks Swiss debate

STELLAR CHEMISTRY
China sees 2nd death as cases spread among families; Japan reports first case

Second person dies from SARS-linked virus in China: official

First case of mystery virus found outside China

Residents 'not worried' in China's pneumonia-stricken Wuhan

STELLAR CHEMISTRY
China birth rate hits lowest level since 1949

Hong Kong teachers living in fear over protest support

Lam says Hong Kong can keep freedoms if 'stays loyal'; Medic arrested on mainland

'LOL!': China's informal, confrontational Twitter diplomacy

STELLAR CHEMISTRY
Four Chinese sailors kidnapped in Gabon are free

Bolsonaro pardons Brazil security forces convicted of unintentional crimes

STELLAR CHEMISTRY








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.