. Medical and Hospital News .




SPACE TRAVEL
The Body Electric: Researchers Move Closer to Low-Cost, Implantable Electronics
by Pam Frost Gorder for OSU News
Columbus OH (SPX) Jun 12, 2013


A silicon circuit, coated with a protective layer and immersed in fluid that mimicks human body chemistry. Photo courtesy of Ohio State University.

New technology under development at The Ohio State University is paving the way for low-cost electronic devices that work in direct contact with living tissue inside the body. The first planned use of the technology is a sensor that will detect the very early stages of organ transplant rejection.

Paul Berger, professor of electrical and computer engineering and physics at Ohio State, explained that one barrier to the development of implantable sensors is that most existing electronics are based on silicon, and electrolytes in the body interfere with the electrical signals in silicon circuits. Other, more exotic semiconductors might work in the body, but they are more expensive and harder to manufacture.

"Silicon is relatively cheap... it's non-toxic," Berger said. "The challenge is to bridge the gap between the affordable, silicon-based electronics we already know how to build, and the electrochemical systems of the human body."

In a paper in the journal Electronics Letters, Berger and his colleagues describe a new, patent-pending coating that that they believe will bridge that gap.

In tests, silicon circuits that had been coated with the technology continued to function, even after 24 hours of immersion in a solution that mimicked typical body chemistry.

The project began when Berger talked to researchers in Ohio State's Department of Biomedical Engineering, who wanted to build an insertable sensor to detect the presence of proteins that mark the first signs of organ rejection in the body. They were struggling to make a working protein sensor from gallium nitride.

"We already have sensors that would do a great job at detecting these proteins, but they're made out of silicon. So I wondered if we could come up with a coating that would protect silicon and allow it to function while it directly touched blood, bodily fluids or living tissue," Berger said.

In the body, electrolytes such as sodium and potassium control nerves and muscles and maintain hydration. They do this by carrying a positive or negative electric charge that spurs important chemical reactions. But those same charges make the electrolytes attractive to silicon, which will readily absorb them. Once inside, the charges alter the electronic behavior of the silicon so that the readings of a sensor can't be trusted.

In the study, Berger's team tested whether electrolytes could be blocked from entering silicon with a layer of aluminum oxide.

The researchers submerged the coated test sensors in fluid for up to 24 hours, removed them from the solution, and then ran a voltage across them to see if they were working properly. The tests showed that the oxide coating effectively blocked electrolytes from the solution so the sensors remained fully functional.

Once developed, a device using this technology could detect certain proteins that the body produces when it's just beginning to reject a transplanted organ. Doctors would insert a needle into the patient's body near the site of the implanted organ. Silicon sensors on the needle would detect the protein, and doctors would know how to tailor the patient's dosage of anti-rejection drugs based on the sensor readings.

The work represents a first step toward fabricating devices that could be implanted in the body long-term, Berger said.

Though the current study describes a silicon sensor coated with aluminum oxide, he envisions that other devices could utilize coatings made from other materials such as titanium. Such coatings could even be tailored to boost the performance of sensors or other biomedical devices.

In particular, Berger sees a potential use for coated polymer semiconductors that goes beyond sensing chemicals in the body. He suspects that such semiconductors could replace nerves in the body that have been damaged by disease or injury.

"We could replace a damaged nerve with an artificial neuron and restore functionality immediately, and that's a really exciting possibility," he said.

Berger's team is working with Ohio State researchers Tom Rosol, professor of veterinary biosciences, and Phillip Popovich, professor of neuroscience, to explore that possibility.

Coauthors on the Electronics Letters paper included former doctoral students Anisha Ramesh, Fang Ren, Patricia Casal and Samit Gupta; current doctoral student in biomedical engineering Andrew Theiss, and Stephen Lee, associate professor of biomedical engineering. The university will license this technology for further development. Read the paper in the journal Electronics Letters.

.


Related Links
Ohio State University
Space Tourism, Space Transport and Space Exploration News






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Get Our Free Newsletters
Space - Defense - Environment - Energy - Solar - Nuclear

...





SPACE TRAVEL
Why innovation thrives in cities
Boston MA (SPX) Jun 06, 2013
In 2010, in the journal Nature, a pair of physicists at the Santa Fe Institute showed that when the population of a city doubles, economic productivity goes up by an average of 130 percent. Not only does total productivity increase with increased population, but so does per-capita productivity. In the latest issue of Nature Communications, researchers from the MIT Media Laboratory's Human ... read more


SPACE TRAVEL
Sandbags and raw nerves as flood peak hits Germany

More radioactive leaks reported at Fukushima plant

Japan disaster cash spent on counting turtles: report

Agreement over Statue of Liberty security screening

SPACE TRAVEL
Lockheed Martin Completes Functional Testing of First GPS III Satellite Bus Electronic Systems

Glitch puts off Indian navigation satellite launch by a fortnight

Orbcomm And Cartrack Deliver Telematics Solution For African Market

Narayansami Inaugurates ISRO Navigation Centre

SPACE TRAVEL
Geneticist speculates humans could have big eyes, foreheads in future

How similar are the gestures of apes and human infants? More than you might suspect

Discovery of oldest primate skeleton helps chart early evolution of humans, apes

Turning point for early human diets occurred 3.5 million years ago

SPACE TRAVEL
British butterfly desperate for warm weather this summer

Fears for African rhinos in China forest

U.S. proposes dropping federal protection for gray wolves

Scientists devise technology to help manage game reserves

SPACE TRAVEL
Quack shot: Duck genome takes aim at bird flu

Mosquitoes reared in cooler temps more susceptible to viruses

Cracking the Code of HIV; Providing An Up-Close View of the Enemy

No benefit from double dose of Tamiflu for flu: study

SPACE TRAVEL
China Nobel winner's relative gets 11 years in jail

Chinese website bans searches for 'yellow duck'

Obama urged to press China to free 16 prisoners

China blocks Tiananmen anniversary remembrance

SPACE TRAVEL
Global cybercrime ring targeted by Microsoft and FBI

Report: Belgian army sold helicopters to firm linked to trafficking

US feds 'kidnapped' suspected druglord: Guinea-Bissau

US ships look to net big contraband catches in Pacific

SPACE TRAVEL
Japan economy heats up in first quarter

Walker's World: Europe's blame game

Outside View: Sub-par U.S. jobs growth expected

Outside View: Economy adds 175,000 jobs in May but trouble ahead




The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement