Medical and Hospital News  
TECH SPACE
The lightest shielding material in the world
by Staff Writers
Zurich, Switzerland (SPX) Jul 03, 2020

A sample of the electromagnetic shielding material made by Empa - a composite of cellulose nanofibres and silver nanowires.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic components or the transmission of signals. High-frequency electromagnetic fields can only be shielded with conductive shells that are closed on all sides. Often thin metal sheets or metallized foils are used for this purpose.

However, for many applications such a shield is too heavy or too poorly adaptable to the given geometry. The ideal solution would be a light, flexible and durable material with extremely high shielding effectiveness.

Aerogels against electromagnetic radiation
A breakthrough in this area has now been achieved by a research team led by Zhihui Zeng and Gustav Nystrom. The researchers are using nanofibers of cellulose as the basis for an aerogel, which is a light, highly porous material. Cellulose fibres are obtained from wood and, due to their chemical structure, enable a wide range of chemical modifications. They are therefore a highly popular research object.

The crucial factor in the processing and modification of these cellulose nanofibres is to be able to produce certain microstructures in a defined way and to interpret the effects achieved. These relationships between structure and properties are the very field of research of Nystrom's team at Empa.

The researchers have succeeded in producing a composite of cellulose nanofibers and silver nanowires, and thereby created ultra-light fine structures which provide excellent shielding against electromagnetic radiation.

The effect of the material is impressive: with a density of only 1.7 milligrams per cubic centimeter, the silver-reinforced cellulose aerogel achieves more than 40 dB shielding in the frequency range of high-resolution radar radiation (8 to 12 GHz) - in other words: Virtually all radiation in this frequency range is intercepted by the material.

Ice crystals control the shape
Not only the correct composition of cellulose and silver wires is decisive for the shielding effect, but also the pore structure of the material. Within the pores, the electromagnetic fields are reflected back and forth and additionally trigger electromagnetic fields in the composite material, which counteract the incident field.

To create pores of optimum size and shape, the researchers pour the material into pre-cooled moulds and allow it to freeze out slowly. The growth of the ice crystals creates the optimum pore structure for damping the fields.

With this production method, the damping effect can even be specified in different spatial directions: If the material freezes out in the mould from bottom to top, the electromagnetic damping effect is weaker in the vertical direction.

In the horizontal direction - i.e. perpendicular to the freezing direction - the damping effect is optimized. Shielding structures cast in this way are highly flexible: even after being bent back and forth a thousand times, the damping effect is practically the same as with the original material. The desired absorption can even be easily adjusted by adding more or less silver nanowires to the composite, as well as by the porosity of the cast aerogel and the thickness of the cast layer.

The lightest electromagnetic shield in the world
In another experiment, the researchers removed the silver nanowires from the composite material and connected their cellulose nanofibres with two-dimensional nanoplates of titanium carbide, which were produced using a special etching process.

The nanoplates act like hard "bricks" that are joined together with flexible "mortar" made of cellulose fibers. This formulation was also frozen in cooled forms in a targeted manner. In relation to the weight of the material, no other material can achieve such shielding. This ranks the titanium carbide nanocellulose aerogel as by far the lightest electromagnetic shielding material in the world.

Research paper


Related Links
Swiss Federal Laboratories For Materials Science And Technology
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TECH SPACE
Precise measurement of liquid iron density under extreme conditions
Kumamoto, Japan (SPX) Jun 26, 2020
Using the large synchrotron radiation facility SPring-8 in Japan, a collaboration of researchers from Kumamoto University, the University of Tokyo, and others from Japan and France have precisely measured the density of liquid iron under conditions similar to those at Earth's outer core: 1,000,000 atm and 4,000 degrees C. Accurate density measurements of liquid iron under such extreme conditions is very important for understanding the chemical make-up of our planet's core. The Earth has a solid me ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Hungary enlists army in fight against virus joblessness

Build a better, greener world economy after pandemic: Stiglitz

'Hey Siri,' shortcut put to use against police abuse

Morocco navy 'rescues' 100 seaborne migrants: agency

TECH SPACE
Beidou system's applications spread around globe

Microchip releases major update to BlueSky GNSS Firewall

Beidou system sees wide application across the country

UK looking at alternatives to UK GPS plans

TECH SPACE
In the wild, chimpanzees are more motivated to cooperate than bonobos

Archaeologists find ancient circle of deep shafts near Stonehenge

Neandertal genes in the petri dish

A Neandertal from Chagyrskaya Cave

TECH SPACE
New eDNA technique may reduce pathogens in aquatic animal trade

Sumatran tiger killed in suspected poisoning

Sexual competition, choice helps protect species from extinction

Plants can camouflage odours to avoid being eaten: study

TECH SPACE
China virus city in transport shutdown as WHO delays decision

Europe boosts China flight checks as killer virus spreads

Global health emergencies: A rarely used call to action

Post-COVID, more in West see China as major power: study

TECH SPACE
China orders four US media outlets to disclose finances, staff

Pentagon lists firms it says are backed by Chinese military

Security law 'most important' development for Hong Kong since handover: leader

Hong Kong marks handover anniversary under shadow of security law

TECH SPACE
Sweden extradites Chinese 'multi-million-dollar money launderer' to US

TECH SPACE








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.