Subscribe free to our newsletters via your
. Medical and Hospital News .




CARBON WORLDS
Thermal vision: Graphene light detector first to span infrared spectrum
by Staff Writers
Ann Arbor MI (SPX) Mar 24, 2014


File image.

The first room-temperature light detector that can sense the full infrared spectrum has the potential to put heat vision technology into a contact lens. Unlike comparable mid- and far-infrared detectors currently on the market, the detector developed by University of Michigan engineering researchers doesn't need bulky cooling equipment to work.

"We can make the entire design super-thin," said Zhaohui Zhong, assistant professor of electrical engineering and computer science. "It can be stacked on a contact lens or integrated with a cell phone."

Infrared light starts at wavelengths just longer than those of visible red light and stretches to wavelengths up to a millimeter long. Infrared vision may be best known for spotting people and animals in the dark and heat leaks in houses, but it can also help doctors monitor blood flow, identify chemicals in the environment and allow art historians to see Paul Gauguin's sketches under layers of paint.

Unlike the visible spectrum, which conventional cameras capture with a single chip, infrared imaging requires a combination of technologies to see near-, mid- and far-infrared radiation all at once. Still more challenging, the mid-infrared and far-infrared sensors typically need to be at very cold temperatures.

Graphene, a single layer of carbon atoms, could sense the whole infrared spectrum-plus visible and ultraviolet light. But until now, it hasn't been viable for infrared detection because it can't capture enough light to generate a detectable electrical signal. With one-atom thickness, it only absorbs about 2.3 percent of the light that hits it. If the light can't produce an electrical signal, graphene can't be used as a sensor.

"The challenge for the current generation of graphene-based detectors is that their sensitivity is typically very poor," Zhong said. "It's a hundred to a thousand times lower than what a commercial device would require."

To overcome that hurdle, Zhong and Ted Norris, the Gerard A. Mourou Professor of Electrical Engineering and Computer Science, worked with graduate students to design a new way of generating the electrical signal. Rather than trying to directly measure the electrons that are freed when light hits the graphene, they amplified the signal by looking instead at how the light-induced electrical charges in the graphene affect a nearby current.

"Our work pioneered a new way to detect light," Zhong said. "We envision that people will be able to adopt this same mechanism in other material and device platforms."

To make the device, they put an insulating barrier layer between two graphene sheets. The bottom layer had a current running through it. When light hit the top layer, it freed electrons, creating positively charged holes. Then, the electrons used a quantum mechanical trick to slip through the barrier and into the bottom layer of graphene.

The positively charged holes, left behind in the top layer, produced an electric field that affected the flow of electricity through the bottom layer. By measuring the change in current, the team could deduce the brightness of the light hitting the graphene. The new approach allowed the sensitivity of a room-temperature graphene device to compete with that of cooled mid-infrared detectors for the first time.

The device is already smaller than a pinky nail and is easily scaled down. Zhong suggests arrays of them as infrared cameras.

"If we integrate it with a contact lens or other wearable electronics, it expands your vision," Zhong said. "It provides you another way of interacting with your environment."

While full-spectrum infrared detection is likely to find application in military and scientific technologies, the question for the general tech market may soon be, "Do we want to see in infrared?"

The device is described in a paper titled "Graphene photodetectors with ultra-broadband and high responsivity at room temperature," which appears online in Nature Nanotechnology.

.


Related Links
Center for Photonic and Multiscale Nanomaterials
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





CARBON WORLDS
Can material rivaling graphene be mined out of rocks
Warsaw, Poland (SPX) Mar 19, 2014
Will one-atom-thick layers of molybdenum disulfide, a compound that occurs naturally in rocks, prove to be better than graphene for electronic applications? There are many signs that might prove to be the case. But physicists from the Faculty of Physics at the University of Warsaw have shown that the nature of the phenomena occurring in layered materials are still ill-understood and require furt ... read more


CARBON WORLDS
Safety lapses rapped after US nuclear plant fire

Contaminated Fukushima water may be dumped as problems mount

Fukushima: three years on and still a long road ahead

31 dead, nine missing in China lorry blast

CARBON WORLDS
Exelis completes transmitter assemblies for first GPS III satellite payload

New Airborne GPS Technology for Weather Conditions Takes Flight

Astro Aerospace Delivers Antennas For Next-Gen GPS III Satellites 3 through 6

ESA to certify first Galileo position fixes worldwide

CARBON WORLDS
New stratigraphic research makes Little Foot the oldest complete Australopithecus

Stirring the simmering 'designer baby' pot

Empathy chimpanzees offer is key to understanding human engagement

Natural selection has altered the appearance of Europeans over the past 5,000 years

CARBON WORLDS
Reintroduction experiments give new hope for a plant on the brink of extinction

Sea anemone is genetically half animal, half plant

Rocky Mountain wildflower season lengthens by more than a month

Japan retailer Rakuten slammed over ivory and whale meat products

CARBON WORLDS
Climate Conditions Help Forecast Meningitis Outbreaks

Two-year-old Cambodian girl dies of bird flu

When big isn't better: How the flu bug bit Google

Macau culls 7,500 chicken over bird flu scare

CARBON WORLDS
UN experts condemn death of Chinese dissident

Union Jack-waving fans greet Hong Kong's last governor

Migration in China: shifting slightly, but still going strong

Thousands mourn Shanghai's 'underground' bishop

CARBON WORLDS
Facebook announces steps to stop illegal gun sales

French navy arrests pirates suspected of oil tanker attack

Mexican vigilantes accuse army of killing four

Gunmen kill two soldiers in troubled Mexican state

CARBON WORLDS
China's politically-sensitive yuan falls after reform

China able to keep economic operation in proper range

Weak start to year a test for Beijing: analysts

China's Li says debt defaults 'hardly avoidable'




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.