Medical and Hospital News  
SOLAR DAILY
This light-powered catalyst mimics photosynthesis
by Anne Trafton for MIT News
Boston MA (SPX) Nov 16, 2021

By mimicking photosynthesis, MIT researchers have designed a new type of photocatalyst that can absorb light and use it to help catalyze a variety of chemical reactions that would otherwise be difficult to perform.

By mimicking photosynthesis, the light-driven process that plants use to produce sugars, MIT researchers have designed a new type of photocatalyst that can absorb light and use it to drive a variety of chemical reactions.

The new type of catalyst, known as a biohybrid photocatalyst, contains a light-harvesting protein that absorbs light and transfers the energy to a metal-containing catalyst. This catalyst then uses the energy to perform reactions that could be useful for synthesizing pharmaceuticals or converting waste products into biofuels or other useful compounds.

"By replacing harmful conditions and reagents with light, photocatalysis can make pharmaceutical, agrochemical, and fuel synthesis more efficient and environmentally compatible," says Gabriela Schlau-Cohen, an associate professor of chemistry at MIT and the senior author of the new study.

Working with colleagues at Princeton University and North Carolina State University, the researchers showed that the new photocatalyst could significantly boost the yield of the chemical reactions they tried. They also demonstrated that unlike existing photocatalysts, their new catalyst can absorb all wavelengths of light.

MIT graduate student Paul Cesana is the lead author of the paper, which appears in the journal Chem.

High-energy reactions
Most catalysts speed up reactions by lowering the energy barrier needed for the reaction to occur. In the past 20 years or so, chemists have made great strides in developing photocatalysts - catalysts that can absorb energy from light. This allows them to catalyze reactions that couldn't occur without that extra input of energy.

"In photocatalysis, the catalyst absorbs light energy to go to a much more highly excited electronic state. And through that energy, it introduces reactivity that would be prohibitively energy-intensive if all that were available were ground-state energy," Schlau-Cohen says.

This is analogous to what plants do during photosynthesis. Plant cells' photosynthetic machinery includes light-absorbing pigments such as chlorophyll that capture photons from sunlight. This energy is then transferred to other proteins that store the energy as ATP, and that energy is then used to produce carbohydrates.

In previous work on photocatalysts, researchers have used one molecule to perform both the light absorption and catalysis. This approach has limitations, because most of the catalysts used can only absorb certain wavelengths of light, and they don't absorb light efficiently.

"When you have one molecule that needs to do the light harvesting and the catalysis, you can't simultaneously optimize for both things," Schlau-Cohen says. "It's for that reason that natural systems separate them. In photosynthesis, there's a dedicated architecture where some proteins do the light harvesting and then funnel that energy directly to the proteins that do the catalysis."

To create their new biohybrid catalyst, the researchers decided to mimic photosynthesis and combine two separate elements: one to harvest light and another to catalyze the chemical reaction. For the light-harvesting component, they used a protein called R-phycoerythrin (RPE), found in red algae. They attached this protein to a ruthenium-containing catalyst, which has been previously used for photocatalysis on its own.

Working with North Carolina State University researchers led by professor of chemistry Felix Castellano, Schlau-Cohen's lab showed that the light-harvesting protein could effectively capture light and transfer it to the catalyst. Then, Princeton University researchers led by David MacMillan, a professor of chemistry and a recent recipient of the Nobel Prize in chemistry, tested the performance of the catalyst in two different types of chemical reactions. One is a thiol-ene coupling, which joins a thiol and an alkene to form a thioether, and the other replaces a leftover thiol group with methyl after peptide coupling.

The Princeton team showed that the new biohybrid catalyst could boost the yield of these reactions up to tenfold, compared to the ruthenium photocatalyst on its own. They also found that the reactions could occur under illumination with red light, which has been difficult to achieve with existing photocatalysts and is beneficial because it produces fewer unwanted side reactions and is less damaging to tissue, so it could potentially be used in biological systems.

Chemical synthesis
This improved photocatalyst could be incorporated into chemical processes that use the two reactions tested in this study, the researchers say. Thiol-ene coupling is useful for creating compounds used in protein imaging and sensing, drug delivery, and biomolecule stability.

As one example, it is used to synthesize lipopeptides that may enable easier uptake of antigen vaccine candidates. The other reaction the researchers tested, cysteinyl desulfurization, has many applications in peptide synthesis, including the production of enfurvitide, a drug that could be used to treat HIV.

This type of photocatalyst could also potentially be used to drive a reaction called lignin depolymerization, which could help to generate biofuels from wood or other plant materials that are difficult to break down.

The researchers now plan to try swapping in different light harvesting proteins and catalysts, to adapt their approach for a variety of chemical reactions.

"We did a proof of principle where you can separate light harvesting and catalytic function. Now we want to think about varying the catalytic piece and varying the light-harvesting piece to expand that toolkit, to see if this approach can work in different solvents and in different reactions," Schlau-Cohen says.

This work was supported as part of the Bioinspired Light-Escalated Chemistry (BioLEC) Energy Frontier Research Center, funded by the U.S. Department of Energy Office of Science.


Related Links
Schlau-Cohen Lab at MIT
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SOLAR DAILY
Intensified solar thermochemical CO2 splitting over iron-based perovskite
Dalian, China (SPX) Nov 11, 2021
Anthropogenic CO2 is the main cause of climate change. There is a pressing need to develop efficient technologies for chemical/fuel production from CO2, ultimately realizing carbon circularity. Among all the various renewable energy solutions, the two-step solar thermochemical CO2-splitting (STCS), exploiting concentrated solar energy of entire solar spectrum to drive redox reactions, shows great promise given its ultra-high theoretical solar-to-fuel efficiency. Isothermal chemical cycles have bee ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
Belarus will respond to attacks; Iraq offers repatriate volunteers

Belarus warns Poland against 'provocations,' denies migrant claims

Poland blocks migrants at Belarus border, warns of 'armed' escalation

Hard hit nations demand 'loss and damage' help at COP26

SOLAR DAILY
US Space Force contracts Lockheed Martin for three more GPS IIIF satellites

Spirent Offers First Commercially Available Test Capability for Galileo HAS

China to share its Beidou expertise

China and Africa will strengthen cooperation on Beidou satellite system

SOLAR DAILY
Study finds a striking difference between neurons of humans and other mammals

Partial skull of Homo naledi child gives new insight into a remarkable species

Rare boomerang collection from South Australia reveals a diverse past

Newly named species of early human could help explain evolutionary gaps

SOLAR DAILY
Amazon birds becoming smaller, longer-winged due to climate change

India's born-again elephants repel four-legged rampages

Rapidly evolving species more likely to go extinct, study suggests

Weather changes influence prevalence of bacterial diseases in bee colonies

SOLAR DAILY
HSBC chief backs Hong Kong's coronavirus isolation

China donates 500,000 more vaccine doses to Syria

Beijing seals off mall, housing compounds over virus outbreak

Chinese city offers cash for clues in Covid 'people's war'

SOLAR DAILY
Pro-democracy clothing brand Chickeeduck to quit Hong Kong

Rapper defends China satire 'Fragile' as views hit 30m

Australian reporter refused Hong Kong visa in latest media blow

China ruling party leaders pass historic Xi resolution

SOLAR DAILY
4 Colombian soldiers killed in latest ambush by drug gang

Four Colombian soldiers killed in 'retaliation' for drug lord's arrest: army

Iran's navy says repulses pirate attack in Gulf of Aden

SOLAR DAILY








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.