Medical and Hospital News  
CHIP TECH
Time crystals may hold secret to coherence in quantum computing
by Staff Writers
Helsinki, Finland (SPX) May 30, 2018

Time crystals.

An Aalto University study has provided new evidence that time crystals can physically exist - a claim currently under hot debate.

A time crystal is a structure that does not repeat in space, like normal three-dimensional crystals such as snowflakes or diamonds, but in time. In practice this means that crystals constantly undergo spontaneous change, breaking the symmetry of time by achieving a self-sustaining oscillation.

The value is in the time crystal's coherency, a property that allows temporal and spatial consistency, amounting to longevity otherwise not possible.

'Nature has given us a system that wants to be coherent over time,' says Senior Scientist Vladimir Eltsov, leader of the ROTA research group at Aalto University.

'The system spontaneously begins to evolve in time coherently, over long periods of time, even infinitely long,' he shares.

With more understanding, the coherent nature of a time crystal may pave the way for eventual real-world applications. Researchers are hunting for systems that preserve coherence over the long term to make, for example, quantum information processing devices, but they struggle with sources resistant to decay.

Until recently, there has been little experimental evidence of the phenomenon. Physicists around the world have been racing to determine if - and how - these unique structures can be observed.

'There has been a lot of theoretical papers, but very few practical realizations. So ours is one of the few, and the first to demonstrate quasi-crystals,' says Eltsov explains.

By understanding the fundamentals of time crystals - as in, when and how they materialize - researchers may be one day able to harness these principles to develop coherency in other devices, regardless of environmental factors.

The finding, achieved by studying the Bose-Einstein condensation of magnons in superfluid Helium-3, also has implications for other branches of physics.

'Helium-3 is related to practically all branches of physics: gravity, topology, particle physics, cosmology,' says Professor Emeritus Grigori Volovik at Aalto University, a global pioneer in the study of connections between cosmology, high-energy physics and condensed matter.

In the future it may even be possible to look at time itself, including the possibility of constructing the boundary between time going forward and back, as theory suggests.

'It is an entire universe of study,' Volovik emphasizes.

The scientists observed the time quasicrystal and its transition to a superfluid time crystal at the Low Temperature Laboratory at Aalto University in Finland, which has a long-standing history of research on superfluidity.

The results of the study, funded by the European Research Council, were published in Physical Review Letters on May 25, 2018.


Related Links
Aalto University
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


CHIP TECH
Researchers control the properties of graphene transistors using pressure
New York NY (SPX) May 24, 2018
A Columbia University-led international team of researchers has developed a technique to manipulate the electrical conductivity of graphene with compression, bringing the material one step closer to being a viable semiconductor for use in today's electronic devices. "Graphene is the best electrical conductor that we know of on Earth," said Matthew Yankowitz, a postdoctoral research scientist in Columbia's physics department and first author on the study. "The problem is that it's too good at ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
Navy captain accused in deadly Tunisia migrant boat sinking

Arkema's Texas plant unprepared for Harvey floods, inquiry finds

An electronic rescue dog

Brazil rescues African, Guyanese migrants drifting at sea

CHIP TECH
UK set to demand EU repayment in Brexit satellite row

China holds Satellite Navigation Conference in Harbin

Swift improves position accuracy and availability for precision farm and shipping customers

Satellite pair arrive for Galileo's next rumble in the jungle

CHIP TECH
Prehistoric people also likely disrupted by environmental change

'Uniquely human' muscles have been discovered in apes

Trait tied to autism may explain emergence of realistic art

What we inherited from our bug-eating ancestors

CHIP TECH
Bolivia's Madidi National Park is most biodiverse in the world

Montana State laser technology could help Yellowstone battle invasive trout

Giant invasive flatworms found in France, French territories

Female wombats indicate fertility by biting males

CHIP TECH
Deadly malaria's evolution revealed

New portable malaria screening instrument developed

Asian tiger mosquito on the move

New pig virus found to be a potential threat to humans

CHIP TECH
China jails Tibetan-language advocate for 5 years

A shipwreck and an 800-year-old 'made in China' label reveal lost history

Chinese Terracotta Warriors archaeologist dies aged 82

Hong Kong independence leader found guilty of rioting

CHIP TECH
Three Mexican soldiers killed in ambush

US targets Chinese fentanyl 'kingpin' with sanctions

Singaporean guilty of sophisticated exam cheating plot

S. Korea deploys warship to Ghana after pirates kidnap sailors

CHIP TECH








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.