Medical and Hospital News  
CHIP TECH
Tiny Laser Light Show Illuminates Quantum Computing

The researchers saw that the laser pulses also correctly manipulated the quantum properties of each target atom - in this case a line of five rubidium-87 atoms - without disturbing any neighboring atoms, which were separated by just 8.7 microns, about one-tenth the diameter of a human hair.
by Staff Writers
Washington DC (SPX) Dec 10, 2010
A new laser-beam steering system that aims and focuses bursts of light onto single atoms for use in quantum computers has been demonstrated by collaborating researchers from Duke University and the University of Wisconsin-Madison.

Described in the journal Applied Physics Letters, published by the American Institute of Physics, the new system is somewhat like the laser-light-show projectors used at rock concerts and planetariums. But it's much smaller, faster, atom-scale accurate and aimed at the future of computing, not entertainment.

In theory, quantum computers will be able to solve very complex and important problems if their basic elements, called qubits, remain in a special "quantum entangled" state for a long enough time for the calculations to be carried out before information is lost to natural fluctuations.

One of several promising approaches to quantum computing uses arrays of individual atoms suspended by electromagnetic forces.

Pulses of laser light manipulate the internal states of the atoms that represent the qubits, to carry out the calculation. However the lasers must also be focused and aimed so accurately that light meant for one atom doesn't affect its neighbors.

The new system did just that. Tiny micromirrors, each only twice the diameter of a human hair, pointed to each target atom in as little as 5 microseconds, which is about 1,000 times faster than sophisticated beam-steering mirrors developed for optical communications switching, not to mention the still slower units used in light shows.

The researchers saw that the laser pulses also correctly manipulated the quantum properties of each target atom - in this case a line of five rubidium-87 atoms - without disturbing any neighboring atoms, which were separated by just 8.7 microns, about one-tenth the diameter of a human hair.

"Our experiments demonstrated the crucial requirement that our micromirror system maintain the laser-beam quality necessary to manipulate the internal states of the individual atoms," said Jungsang Kim, leader of the Duke researchers who designed the micromirror system. The atomic physics experiments were performed in Mark Saffman's group at University of Wisconsin-Madison.

The groups plan to continue their collaboration, with future experiments targeting two-qubit gates, which are expected to be the basic building block of quantum logic, and atoms confined in larger two-dimensional arrays.

The article, "Independent individual addressing of multiple neutral atom qubits with a micromirror-based beam steering system" by Caleb Knoernschild, Xianli Zhang, Larry Isenhower, Alex T. Gill, Felix P. Lu, Mark Saffman, and Jungsang Kim appears in the journal Applied Physics Letters.



Share This Article With Planet Earth
del.icio.usdel.icio.us DiggDigg RedditReddit
YahooMyWebYahooMyWeb GoogleGoogle FacebookFacebook



Related Links
American Institute of Physics
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


CHIP TECH
Rice Physicists Discover Ultrasensitive Microwave Detector
Houston TX (SPX) Dec 10, 2010
Physicists from Rice University and Princeton University have discovered how to use one of the information technology industry's mainstay materials - gallium arsenide semiconductors - as an ultrasensitive microwave detector that could be suitable for next-generation computers. The discovery comes at a time when computer chip engineers are racing both to add nanophotonic devices directly to ... read more







CHIP TECH
Flood-swept Czech town turns disaster into development

Britain to outsource search-and-rescue ops

Facebook co-founders pledge wealth to charity

Colombia mudslide toll rises to 46 dead

CHIP TECH
Program Error Caused Russian Glonass Satellite Loss

GPS Not Working A Shoe Radar May Help You Find Your Way

GPS Satellite Achieves 20 Years On-Orbit

World-Leading Spatial Experts Meet In Sydney

CHIP TECH
Babies' Biological Clocks Dramatically Affected By Birth Light Cycle

Seeing The World All Depends On Differen Visual Minds

Apes Unwilling To Gamble When Odds Are Uncertain

Jet-Lagged And Forgetful? It's No Coincidence

CHIP TECH
Soaring Is Better Than Flapping

Experts link 'stress' to Indian big cats getting smaller

New Microscopic Life Aboard The RMS Titanic

Scientists re-discover Africa's 'terrible hairy fly'

CHIP TECH
Bacteria Seek To Topple The Egg As Top Flu Vaccine Tool

Hong Kong lowers bird-flu alert

Entomologists Could Shrink Dengue-Spreading Mosquito Population

South Africa's anti-AIDS drugs reach a million people

CHIP TECH
Lawyers blast China for blocking Liu from picking up Nobel

China lashes out at 'political theatre' of Nobel committee

Chinese state press likens Nobel ceremony to cult ritual

Nobel jury tries to abate Chinese fury at peace pick

CHIP TECH
Somalia's pirates take to the high seas

Pirate to face trial in Belgium: defence ministry

Piracy sidelines third of Taiwan's Indian Ocean tuna fleet

Dutch navy arrests 20 Somalis over S.African yacht attack

CHIP TECH
China's inflation rises at fastest pace in two years

China in 2010: economic power, but more diplomatic isolation

China raises bank reserve requirement in inflation fight

China GDP tops Japan in Q3, but behind over 9 months: govt


The content herein, unless otherwise known to be public domain, are Copyright 1995-2010 - SpaceDaily. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement