Medical and Hospital News  
TIME AND SPACE
Tiny but very large wavelength perturbations solve Hubble Tension
by Staff Writers
Beijing, China (SPX) Jan 27, 2022

Figure 1: The sketch depicts a perturbation of very large wavelength, larger than the size of the maximum distance light could have travelled since the origin of the Universe. The volume inside is the visible universe. (Credit: Prabhakar Tiwari)

It is generally believed that the Universe is isotropic and homogeneous on large distance scales, i.e., there is no preferred position or direction in the Universe. This hypothesis forms the basis of the standard Big Bang cosmology and is called the cosmological principle (CP). It implies that the Universe is expanding and, to a good approximation, has exactly the same properties at all spatial positions.

This is applicable only in a special frame of reference, called the cosmic frame of rest. Besides this smooth background, there also exist small fluctuations which lead to the formation of galaxies and other structures. Although these are not distributed homogeneously, they follow CP in a statistical sense. For example, the matter density in the Universe is expected to be the same at all positions after averaging over a sufficiently large distance scale.Its precise value is so far unknown but is generally believed to be larger than about 3000 billion billion kilometers.

CP does not follow from the laws of fundamental Physics and has to be conjectured as an independent hypothesis. Furthermore, it is consistent only if we assume inflation, i.e., a phase during which the Universe went through very rapid exponential expansion, soon after its origin. The researchers also believe that the very early Universe may not be isotropic and homogeneous. It acquires this property during initial phase of inflation.

The principle appears to be observationally valid to a good approximation. However, detailed observations reveal small but significant deviations from isotropy. The matter distribution is found to be higher in one direction compared to the others. Technically, it displays a dipole pattern. Although a part of this can be attributed to our motion with respect to the cosmic frame of rest, this does not seem to be the whole story.

Interestingly, there is another anomalous observation. The observed Hubble parameter, which is a measure of the rate at which the Universe is expanding, also indicates that the local Universe is special and not the same as the Universe elsewhere. Essentially, its value extracted from nearby galaxies seems to deviate from that measured globally. The latter would be the expected mean value over the entire Universe. This deviation is called the Hubble tension and at present is one of the most pressing problems in cosmology.

It has been suggested that the observed deviations from isotropycan be explained if we consider cosmic perturbations or fluctuations with wavelengths larger than the size of the horizon. Horizon is the maximum distance light could have traveled since the origin of the Universe. These are called superhorizon modes. It is assumed that for very large wavelengths, these modes are aligned along the same direction. Hence these do not obey CP.

A research team, led by Dr.Prabhakar Tiwari from the National Astronomical Observatories of Chinese Academy of Sciences (NAOC), has found that miraculously these modes also explain the observed Hubble tension. The findings of the research have recently been published on The Astrophysical Journal Letters (ApJL).

"The new finding connects the two most crucial issues of modern cosmology that have attracted the attention of a large number of cosmologists and astronomers today and a priori appeardisconnected from one another. Furthermore, as the redshift is a crucial observable in cosmology, its corrections due to superhorizon modes would be of fundamental interest," said the lead author Prabhakar Tiwari who is a researcher at NAOC.

Research Report: "Superhorizon Perturbations: A Possible Explanation of the Hubble-Lemaitre Tension and the Large-scale Anisotropy of the Universe"


Related Links
National Astronomical Observatories
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TIME AND SPACE
Mysterious object unlike anything astronomers have seen before
Perth, Australia (SPX) Jan 27, 2022
A team mapping radio waves in the Universe has discovered something unusual that releases a giant burst of energy three times an hour, and it's unlike anything astronomers have seen before. The team who discovered it think it could be a neutron star or a white dwarf-collapsed cores of stars-with an ultra-powerful magnetic field. Spinning around in space, the strange object sends out a beam of radiation that crosses our line of sight, and for a minute in every twenty, is one of the brightest ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Stray bullets kill bystanders as US shootings soar

Climate change, population threaten 'staggering' US flood losses by 2050

Six sue Fukushima nuclear plant operator over thyroid cancer

Covid-hit Australian warship delivers disaster aid to Tonga

TIME AND SPACE
China completes health check on BDS satellite constellation

Providing GPS-quality timing accuracy without GPS

Arianespace to launch eight new Galileo satellites

Two new satellites mark further enlargement of Galileo

TIME AND SPACE
23,000 years ago, humans in Israel enjoyed a new bounty of food options

12,000-year-old rock art in North America

Cracking chimpanzee culture

China's birth rate at record low in 2021: official

TIME AND SPACE
Mexican town hopes pelicans will help tourism take off

More than 200 new species found in Mekong region: WWF

Birds of a feather: India's raptor-rescuing brothers

Magical but messy: Rome scares off its starlings

TIME AND SPACE
Tests of HIV vaccine using mRNA technology have begun

Pet owners go private to jet 'fur babies' out of Hong Kong

Beijing reports highest Covid cases since June 2020 as Olympics loom

Beijing reports highest Covid cases since June 2020 as Olympics loom

TIME AND SPACE
Hong Kong university covers up Tiananmen crackdown tribute

US watchdog warns over athletes' safety at China Olympics

Hong Kong sees first 'seditious publication' jailings since handover

Macau junket boss arrested as crackdown expands; HK minister steps down over tapas

TIME AND SPACE
Iran, Russia, China start war games to counter 'maritime piracy'

Denmark shelves prosecution of Africa piracy suspects

Friction frays Gulf of Guinea anti-piracy efforts

Denmark extends navy detention of four pirates off Africa

TIME AND SPACE








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.