Subscribe free to our newsletters via your
. Medical and Hospital News .




TECH SPACE
Towards perfect control of light waves
by Staff Writers
Garching, Germany (SPX) Jan 17, 2014


Tim Paasch-Colberg with the Femtosecond-Laser at the Laboratory for Attosecond Physics. Image courtesy Thorsten Naeser / MPQ.

A team at the Laboratory for Attosecond Physics (LAP) in Garching (Germany) has constructed a detector, which provides a detailed picture of the waveforms of femtosecond laser pulses (1 fs = 10-15 seconds). Knowledge of the exact waveform of these pulses enables scientists to reproducibly generate light flashes that are a thousand times shorter - lasting only for attoseconds - and can be used to study ultrafast processes at the molecular and atomic levels.

Modern mode-locked lasers are capable of producing extremely short light flashes that last for only a few femtoseconds. In one femtosecond light, which rushes from the Earth to the Moon in just one second, advances only three ten-thousandths of a millimeter.

Such short pulses consist of only one or two oscillations of the electromagnetic field, which are preceded and followed by waves of lower amplitude that are rapidly attenuated. To be utilized in an optimal manner to probe ultrashort processes that occur at the level of molecules and atoms it is important to know the precise form of the high-amplitude oscillations.

A team at the Laboratory for Attosecond Physics at the Max Planck Institute for Quantum Optics (MPQ) including scientists from Technische Universitaet Muenchen (TUM), Ludwig Maximilians-Universitaet Muenchen (LMU) and further co-operation partners has now developed a glass-based detector that allows to accurately determine the form of the light waves that make up an individual femtosecond pulse.

In the course of experiments performed over the past several years, physicists in the group led by Professor Ferenc Krausz (MPQ/LMU) and Professor Reinhard Kienberger (TUM) have learned that, when pulsed high-intensity laser light impinges on glass, it induces measurable amounts of electric current in the material. Krausz and his colleagues have now found that the direction of flow of the current generated by an incident femtosecond pulse is sensitively dependent on the exact form of its wave packet.

In order to calibrate the new glass detector, the researchers coupled their system with a conventional instrument used to measure waveforms of light. Since the energy associated with the laser pulse is sufficient to liberate bound electrons from atoms of a noble gas such as xenon, the "classical" detector measures the currents caused by the motions of these free electrons. But there is a catch - the measurements must be done in a high vacuum.

By comparing the currents induced in the new solid-state detector with the data obtained using the conventional apparatus, the team was able to characterize the performance of their new glass-based set-up, so that it can now be used as a reliable phase detector for few-cycle femtosecond laser pulses.

The new instrument enormously simplifies measurements in the domain of ultrafast physical processes, because one can dispense with the use of cumbersome vacuum chambers. Moreover, in its practical application the technique is much more straightforward than the methods available for the mapping of waveforms hitherto.

If the precise waveform of the femtosecond laser pulse is known, it becomes possible to reproducibly generate stable trains of ultrashort attosecond light flashes, each one a thousand times shorter than the pulse used to induce them.

The composition of the attosecond flashes is in turn highly dependent on the exact shape of the femtosecond pulses. Attosecond flashes can be used to "photograph" the motions of electrons in atoms or molecules. In order to obtain high-resolution images, the length of the flashes must be tuned to take account of the material one wants to investigate.

Highly sensitive and reliable measurements of physical processes at the level of the microcosmos with the aid of single attosecond light flashes of known shape should become easier to perform because, thanks to the new glass-based phase detector, the source of the energy to drive them - the waveform of the laser pulses - can now be controlled much more easily than before.

The research was funded by the European Research Council (ERC), the Marie Curie International Incoming Fellowship Program of the European Union, the German Research Foundation via the Cluster of Excellence Munich-Centre for Advanced Photonics (MAP), the Swiss National Science Foundation and the Alexander von Humboldt Foundation.

Solid-state light-phase detector; Tim Paasch-Colberg, Agustin Schiffrin, Nicholas Karpowicz, Stanislav Kruchinin, Ozge Saglam, Sabine Keiber, Olga Razskazovskaya, Sascha Muhlbrandt, Ali Alnaser, Matthias Kubel, Vadym Apalkov, Daniel Gerster, Joachim Reichert, Tibor Wittmann, Johannes V. Barth, Mark I. Stockman, Ralph Ernstorfer, Vladislav S. Yakovlev, Reinhard Kienberger und Ferenc Krausz; Nature photonics 12. Januar 2014, Doi: 10.1038/nphoton.2013.348

.


Related Links
Laboratory for Attosecond Physics
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
Mission to test laser communications across space distances a success
Greenbelt, Md. (UPI) Dec 31, 2013
NASA says tests using spacecraft in orbit around the moon confirm the potential of using lasers to communicate across space. The Lunar Laser Communication Demonstration mission was designed to show laser communication is possible from a distance of almost a quarter-of-a-million miles, the space agency said. The LLCD, orbiting the moon aboard NASA's Lunar Atmosphere and Dust Envir ... read more


TECH SPACE
UK charity expands Philippine anti-trafficking work

Tornadoes, flood, drought cost US billions in 2013

Funding Problems Threaten US Disaster Preparedness

Microalgae and aquatic plants can help to decrease radiopollution in the Fukushima area

TECH SPACE
Northrop Grumman and Trex Enterprises to Introduce Celestial Navigation to Soldier Precision Targeting Laser Systems

GPS Traffic Maps for Leatherback Turtles Show Hotspots to Prevent Accidental Fishing Deaths

China to upgrade homegrown GPS to improve accuracy

Beidou to cover world by 2020 with 30 satellites

TECH SPACE
Primates: Now with only half the calories!

Study: Chimps can use gestures to achieve specific goals cooperatively

Ultrasound directed to the human brain can boost sensory performance

Australia study debunks existence of 'sixth sense' or ESP

TECH SPACE
Safe havens revealed for biodiversity in a changed climate

Microbes buy low and sell high

South Africa says over 1,000 rhinos poached in 2013

Court blocks Swedish wolf hunt

TECH SPACE
AIDS infections down by a third in S.Africa: UNAIDS

China reports new H7N9 bird flu death

New H7N9 bird flu deaths reported in China: state media

Hong Kong reports second H7N9 death

TECH SPACE
China army officer's gold, liquor haul seized in graft expose

Build it and they will believe, says defiant China tycoon

China starts relaxing one-child policy

China sets dissident trial date as EU envoy criticises rights record

TECH SPACE
Mexican vigilantes accuse army of killing four

Gunmen kill two soldiers in troubled Mexican state

China smugglers dig tunnel into Hong Kong: media

Mexican military seeks to oust cartel from port

TECH SPACE
China 2013 growth flat at 7.7%: AFP survey

Foreign direct investment in China rebounds 5.3% in 2013

H.K. economy world's freest for 20th consecutive year

More than 182,000 officials punished in China graft crackdown




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement