Medical and Hospital News  
STELLAR CHEMISTRY
Twin photons from unequal sources
by Staff Writers
Basel, Switzerland (SPX) Jun 14, 2022

Although the quantum dots of the Basel researchers are different, they emit exactly identical light particles.

Identical light particles (photons) are important for many technologies that are based on quantum physics. A team of researchers from Basel and Bochum has now produced identical photons with different quantum dots - an important step towards applications such as tap-proof communications and the quantum internet.

Many technologies that make use of quantum effects are based on exactly equal photons. Producing such photons, however, is extremely difficult. Not only do they need to have precisely the same wavelength (colour), but their shape and polarization also have to match.

A team of researchers led by Richard Warburton at the University of Basel, in collaboration with colleagues at the University of Bochum, has now succeeded in creating identical photons originating from different and widely-separated sources.

Single photons from quantum dots
In their experiments, the physicists used so-called quantum dots, structures in semiconductors only a few nanometres in size. In the quantum dots, electrons are trapped such that they can only take on very specific energy levels. Light is emitted on making a transition from one level to another. With the help of a laser pulse that triggers such a transition, single photons can thus be created at the push of a button.

"In recent years, other researchers have already created identical photons with different quantum dots", explains Lian Zhai, a postdoctoral researcher and first author of the study that was recently published in Nature Nanotechnology. "To do so, however, from a huge number of photons they had to pick and choose those that were most similar using optical filters." In that way only very few usable photons remained.

Warburton and his collaborators chose a different, more ambitious approach. First, the specialists in Bochum produced extremely pure gallium arsenide from which the quantum dots were made. The natural variations between different quantum dots could thus be kept to a minimum. The physicists in Basel then used electrodes to expose two quantum dots to precisely tuned electric fields. Those fields modified the energy levels of the quantum dots, and they were adjusted in such a way that the photons emitted by the quantum dots had precisely the same wavelength.

93 percent identical
To demonstrate that the photons were actually indistinguishable, the researchers sent them onto a half-silvered mirror. They observed that, almost every time, the light particles either passed through the mirror as a pair or else were reflected as a pair. From that observation they could conclude that the photons were 93 percent identical. In other words, the photons formed twins even though they were "born" completely independently of one another.

Moreover, the researchers were able to realize an important building block of quantum computers, a so-called controlled NOT gate (or CNOT gate). Such gates can be used to implement quantum algorithms that can solve certain problems much faster than classical computers.

"Right now our yield of identical photons is still around one percent", PhD student Gian Nguyen concedes. Together with his colleague Clemens Spindler he was involved in running the experiment. "We already have a rather good idea, however, how to increase that yield in the future." That would make the twin-photon method ready for potential applications in different quantum technologies.

Research Report:Quantum interference of identical photons from remote GaAs quantum dots


Related Links
University of Basel
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


STELLAR CHEMISTRY
Emulator reveals the intricacies of light behavior in complex evolving systems
Orlando FL (SPX) Jun 10, 2022
University of Central Florida researchers are part of a team who have revealed, for the first time, the intricacies of how light behaves in advanced dynamical optical systems with configurations known as non-Hermitian arrangements. In non-Hermitian systems, allowed energy values create self-intersecting surfaces with a unique topology and branch points, which are known as exceptional points. The surfaces cross into each other at a twist, designated by an exceptional point. The team found tha ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
One dead in Shanghai chemical plant explosion

Sri Lankan navy stops Australia-bound migrant boat

As climate impacts grow, so do calls for 'loss and damage' funds

Floods, fires, heat waves: US struggles with climate catastrophes

STELLAR CHEMISTRY
The face of Galileo

Astrocast acquires Hiber, accelerates OEM strategy.

Volunteers watching the skies for the weather and stars

EUSPA celebrates its first 365 days of new Galileo operations

STELLAR CHEMISTRY
Are we born with a moral compass

Amazon's indigenous leaders make plea at Americas summit

China's population set to shrink for first time since the great famine

Unselfish behavior has evolutionary reasons

STELLAR CHEMISTRY
Working 24/7 to save baby manatee orphaned in Colombia

Far from home, new chance in Mexico for Frida the rescued 'pet' tiger

New insights into major transitions on the tree of life

Black Americans bear the brunt of fentanyl 'epidemic' in Washington

STELLAR CHEMISTRY
China Covid pass system allegedly used to block protest

Iraq's Congo fever death toll rises to 27: ministry

Beijing tightens Covid restrictions over 'ferocious' bar cluster

Beijing delays school reopenings after new Covid outbreak

STELLAR CHEMISTRY
China's Xi to host virtual summit for BRICS emerging economies

New Hong Kong cabinet includes four under US sanctions

Australian defence minister introduced to Chinese counterpart

Foreign teachers in Hong Kong govt schools ordered to swear allegiance

STELLAR CHEMISTRY
STELLAR CHEMISTRY








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.