Medical and Hospital News
CHIP TECH
Two quasi-2D perovskite-based heterostructures: Properties and applications
The construction and characterizations of 2D perovskite-based heterostructures as well as the basic optical properties of the constructed heterostructures will then be illustrated. Furthermore, the potential applications of 2D perovskite-based heterostructures in photovoltaic devices, light-emitting diodes, photodetectors, phototransistors and valleytronic devices will be demonstrated. Finally, the current challenges and propose further research directions in the field of 2D perovskite-based heterostructures will be discussed.
Two quasi-2D perovskite-based heterostructures: Properties and applications
by Staff Writers
Wuhan, China (SPX) Feb 03, 2023

Van der Waals heterostructures integrated from various two-dimensional (2D) layered materials provide fundamental building blocks for optoelectronic devices with novel functionalities, such as photovoltaic solar cells, light emitting diodes (LEDs) and photodetectors. Especially, two-dimensional and quasi-two-dimensional perovskites (abbreviated both of them as 2D perovskites hereafter) exhibit unique properties, such as large exciton binding energy, high photoluminescence quantum efficiency, large oscillator strengths and long carrier diffusion length, and thus are emerging candidates for next-generation optoelectronic devices.

To this end, heterostructures incorporating distinct layered 2D perovskites with other layered or non-layered materials can introduce unique optical and optoelectronic properties and vastly expand the potential functionalities and applications of the heterostructures.

Publishing in the journal IJEM, the team led by researchers based at the Huazhong University of Science and Technology have summarized the recent achievements of 2D/quasi-2D perovskite-based heterostructures to facilitate the discovery of unexplored phenomena and open up a new range of optoelectronic applications.

The team introduced the structure and physical properties of 2D/quasi-2D perovskites and then discussed the construction and characterization of 2D/quasi-2D perovskite-based heterostructures and also highlighted the prominent optical properties of the constructed heterostructures. Further, the potential applications of 2D/quasi-2D perovskite-based heterostructures in photovoltaic devices, light emitting devices, photodetectors/phototransistors and valleytronic devices were demonstrated. The challenges and perspectives in the field of 2D perovskites-based heterostructures were also outlined.

The lead researcher, Professor Dehui Li, commented, "The rich electronic and optical physics offered by 2D perovskites renders them to be very promising for optoelectronic applications. The electronic structure of 2D perovskites can be efficiently modulated by changing the layer number n value, substituting halide anions and incorporating organic chains, which further modifies their optical performances, bringing both advantages and disadvantages for optoelectronic applications."

"However, the synthesis of pure phase quasi-2D perovskites and heterostructures on a large scale in a controllable manner is still lacking. In this review, we summarized all developed methods to prepare 2D perovskite and heterostructures, which would be helpful to explore new strategies for material preparation."

Heterostructure construction lay the foundation for optoelectronic device architectures and applications. Various techniques have been developed to build 2D perovskite heterostructures, including dry transfer, solution synthesis and vapor deposition. Besides, optical spectra, phase identification and surface morphology characterization are the common methods to characterize the constructed heterostructures.

Co-first author Dr. Haizhen Wang said, "Optical property is one fascinating functional aspect of 2D perovskite-based heterostructures, which not only inherit the basic physical properties of 2D perovskites but also show rich new photophysics that does not exhibit in each constituent material."

Thus, 2D perovskite-based heterostructures provide an ideal platform to study the charge/energy-transfer processes, ion migration-induced optical properties and nonlinear optical effects. Nevertheless, studies on those aspects remain at a preliminary stage and further investigations are called for.

Co-first author Ph.D. student Yingying Chen said, "2D perovskites can be stacked with other materials to establish heterostructures with different band alignments, which can be type I or type II based on different constituents in heterostructures leading to different optoelectronic applications."

In this review, performances in photovoltaic devices, photodetectors, light-emitting devices, phototransistors and valleytronic devices based on various 2D perovskite heterostructures have been sorted and discussed.

Prof. Dehui Li said: "The excellent optical and optoelectronic properties of 2D perovskite-based heterostructures have led to a wide range of applications in optics and optoelectronics. However, many problems are still encountered at this stage, which include the rational synthesising pure phase 2D perovskites and their heterostructures on large scale in a controllable manner, deeply understanding their fundamental physical properties as well as fully exploring their potential novel optoelectronic applications."

"We believe that more 2D perovskite-based heterostructures with novel functionalities will be constructed taking advantage of the great flexibility in composition, structure and properties of 2D perovskites."

Research Report:Two/Quasi-two-dimensional perovskite-based heterostructures: construction, properties and applications

Related Links
Huazhong University of Science and Technology
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
CHIP TECH
Engineers invent vertical, full-color microscopic LEDs
Boston MA (SPX) Feb 03, 2023
Take apart your laptop screen, and at its heart you'll find a plate patterned with pixels of red, green, and blue LEDs, arranged end to end like a meticulous Lite Brite display. When electrically powered, the LEDs together can produce every shade in the rainbow to generate full-color displays. Over the years, the size of individual pixels has shrunk, enabling many more of them to be packed into devices to produce sharper, higher-resolution digital displays. But much like computer transistors, LEDs ... read more

CHIP TECH
Dutch flood memories unleash new climate fears

Natural disaster costs hit 23-year high in France: insurers

8 dead, including 6 Chinese nationals, after ship sinks near Japan

Saving Earth-based explorers and enabling exploration

CHIP TECH
New Galileo service set to deliver 20 cm accuracy

HawkEye 360 to monitor GPS interference in support of the US Space Force

Falcon 9 launches sixth GPS 3 satellite

Quectel expands its 5G and GNSS Combo Antennas Portfolio

CHIP TECH
The chemistry of mummification - Traces of a global network

Earliest evidence found of Neanderthals killing elephants for food

Brazilian army deploys to protect Indigenous Yanomami

China's Sichuan to scrap three-child limit as birth rates drop

CHIP TECH
Marmot death overshadows Canada Groundhog Day

After miraculous comeback, damselfly in distress again

Second Indonesia tiger attack in days, hunt ongoing

New tiger goes on the prowl in Johannesburg

CHIP TECH
African nations commit to ending AIDS in children by 2030

Beijing has hit 'temporary herd immunity': official

The Covid-19 pandemic in 10 figures

France extends Covid tests for travellers from China

CHIP TECH
Disney+ in Hong Kong drops 'Simpsons' episode with 'forced labour' mention

Ai Weiwei launches new exhibit, says still trying to understand studio demolitions

US extends deportation protection for Hong Kongers fleeing China

'We can't wait!': Jubilant Chinese head home for Lunar New Year

CHIP TECH
US designates Russia's Wagner military group an intl 'criminal organization'

UN alarmed at disappearance of two Mexican activists

Latin American cocaine cartels bring violence to Europe

Global piracy acts drop to 14-year low: report

CHIP TECH
Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.