. Medical and Hospital News .




.
CHIP TECH
UCSB scientists synthesize first genetically evolved semiconductor material
by Staff Writers
Santa Barbara CA (SPX) Jun 14, 2012

This is UCSB Professor Emeritus of biochemistry of molecular genetics Daniel Morse. Credit: UCSB.

In the not-too-distant future, scientists may be able to use DNA to grow their own specialized materials, thanks to the concept of directed evolution. UC Santa Barbara scientists have, for the first time, used genetic engineering and molecular evolution to develop the enzymatic synthesis of a semiconductor.

"In the realm of human technologies it would be a new method, but it's an ancient approach in nature," said Lukmaan Bawazer, first author of the paper, "Evolutionary selection of enzymatically synthesized semiconductors from biomimetic mineralization vesicles," published in the Proceedings of the National Academy of Sciences.

Bawazer, who was a Ph.D. student at the time, wrote the paper with co-authors at UCSB's Interdepartmental Graduate Program in Biomolecular Science and Engineering; Institute for Collaborative Biotechnologies; California NanoSystems Institute and Materials Research Laboratory; and Department of Molecular, Cellular and Developmental Biology. Daniel Morse, UCSB professor emeritus of biochemistry of molecular genetics, directed the research.

Using silicateins, proteins responsible for the formation of silica skeletons in marine sponges, the researchers were able to generate new mineral architectures by directing the evolution of these enzymes.

Silicateins, which are genetically encoded, serve as templates for the silica skeletons and control their mineralization, thus participating in similar types of processes by which animal and human bones are formed. Silica, also known as silicon, is the primary material in most commercially manufactured semiconductors.

In this study, polystyrene microbeads coated with specific silicateins were put through a mineralization reaction by incubating the beads in a water-in-oil emulsion that contained chemical precursors for mineralization: metals of either silicon or titanium dissolved in the oil or water phase of the emulsion. As the silicateins reacted with the dissolved metals, they precipitated them, integrating the metals into the resulting structure and forming nanoparticles of silicon dioxide or titanium dioxide.

With the creation of a silicatein gene pool, through what Bawazer only somewhat euphemistically calls "molecular sex" - the combination and recombination of various silicatein genetic materials - the scientists were able to create a multitude of silicateins, and then select for the ones with desired properties.

"This genetic population was exposed to two environmental pressures that shaped the selected minerals: The silicateins needed to make (that is, mineralize) materials directly on the surface of the beads, and then the mineral structures needed to be amenable to physical disruption to expose the encoding genes," said Bawazer.

The beads that exhibited mineralization were sorted from the ones that didn't, and then fractured to release the genetic information they contained, which could either be studied, or evolved further.

The process yielded forms of silicatein not available in nature, that behaved differently in the formation of mineral structures. For example, some silicateins self-assembled into sheets and made dispersed mineral nanoparticles, as opposed to more typical agglomerated particles formed by natural silicateins. In some cases, crystalline materials were also formed, demonstrating a crystal-forming ability that was acquired through directed evolution, said Bawazer.

Because silicateins are enzymes, said Bawazer, with relatively long amino acid chains that can fold into precise shapes, there is the potential for more functionality than would be possible using shorter biopolymers or more traditional synthetic approaches.

In addition, the process could potentially work with a variety of metals, to evolve different types of materials. By changing the laboratory-controlled environments in which directed evolution occurs, it will be possible to evolve materials with specific capacities, like high performance in an evolved solar cell, for example.

"Here we've demonstrated the evolution of material structure; I'd like to take it a step further and evolve material performance in a functional device," said Bawazer.

Related Links
University of California - Santa Barbara
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries




.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



CHIP TECH
Rice, UCLA slash energy needs for next-generation memory
Houston TX (SPX) Jun 11, 2012
Researchers from Rice University and UCLA unveiled a new data-encoding scheme this week that slashes more than 30 percent of the energy needed to write data onto new memory cards that use "phase-change memory" (PCM) - a competitor to flash memory that has big backing from industry heavyweights. The breakthrough was presented at the IEEE/ACM Design Automation Conference (DAC) in San Francis ... read more


CHIP TECH
Japan to develop drones to monitor radiation

Study predicts imminent irreversible planetary collapse

Japan agency sorry for comparing radiation to wife

Lithuania launches regional nuclear safety watchdog

CHIP TECH
Apple fends off Android challenge with maps, Siri

Boeing, Raytheon and Harris to Pursue GPS Control Segment Sustainment Contract

Revamped Google maps goes offline for mobile

USAF Awards Lockheed Martin GPS III Flight Operations Contract

CHIP TECH
More people, more environmental stress

How infectious disease may have shaped human origins

Homo heidelbergensis was only slightly taller than the Neanderthal

Fossil discovery sheds new light on evolutionary history of higher primates

CHIP TECH
Feathers fly in New York goose wars

A search engine for social networks based on the behavior of ants

Where have all the hummingbirds gone?

Bird Rest Stops To Be Tracked by NASA Rain Radar

CHIP TECH
HIV may have returned in 'cured' patient: scientists

Mama Portia dishes out help for AIDS orphans

Revealed: Secret of HIV's natural born killers

New study shows why swine flu virus develops drug resistance

CHIP TECH
China boycotts religious event over Tibet presence

Hong Kong official questions China dissident death

Ex-Norway PM denied visa to China after Nobel tiff

'Long Hair' Leung: Hong Kong's rebel with a cause

CHIP TECH
Incidence, types of marine piracy studied

Somali Islamists fire on foreign warships

Iran navy saves US freighter from pirates: report

Jailing of marines hitting anti-piracy efforts: Italy

CHIP TECH
Argentina faces grim economic outlook

Japan April factory output revised down to -0.2%

Don't overestimate Germany as euro crisis fighter: Merkel

IMF ties environment to restoring European growth


Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement