Medical and Hospital News  
SOLAR SCIENCE
UNH researcher identifies key differences in solar wind models
by Staff Writers
Durham NH (SPX) May 16, 2017


Researchers used data from NASA's WIND spacecraft project to identify differences in solar wind models. Photo Credit: NASA

The challenge of predicting space weather, which can cause issues with telecommunications and other satellite operations on Earth, requires a detailed understanding of the solar wind (a stream of charged particles released from the sun) and sophisticated computer simulations.

Research done at the University of New Hampshire has found that when choosing the right model to describe the solar wind, using the one that takes longer to calculate does not make it the most accurate.

In the study, published in The Astrophysical Journal, Daniel Verscharen, a research assistant professor in physics at UNH's Space Science Center, compared two commonly used theoretical descriptions, kinetic theory versus magnetohydrodynamics (MHD), when measuring the behavior of turbulence in the solar wind.

Kinetic theory looks at the solar wind as a composition of rapidly moving particles and uses very complicated mathematical methods that require long periods of time when evaluated on sophisticated super computers.

The second description, MHD, views the solar wind as being a fluid, or more gas-like, and is much less complicated to calculate. Surprisingly, the study showed that it was the MHD, the model that was faster to calculate, that delivered the more precise predictions.

"Our research found that it makes a huge difference which model is used," said Verscharen. "We found that the much faster computed MHD models may actually capture some of the solar-wind behavior a lot better than expected. This is a very important result for solar-wind modelers because it may justify the application of MHD, based on first principles and observations."

To prove his theory, Verscharen collected data taken from the WIND spacecraft, which is currently orbiting in the solar wind, from study co-authors Christopher Chen at the Imperial College London and Robert Wicks from University College London.

After comparing the theory with the actual spacecraft data, the team found that the type of disturbance they were investigating behaved a lot more like a fluid than a kinetic medium with collisionless particles. This was unexpected because they believed that the kinetic theory should work much better in a gas as dilute, or thin, as the solar wind.

The finding could lead to a more efficient way to forecast space weather for institutions that need to continually model the solar wind, like NASA. Severe space weather can cause satellite and communication failures, GPS loss, power outages, and can even have effects on commercial airlines and space flight.

In order to forecast the effects that solar wind plasma and energetic particles might have on these systems, modelers currently run different computer simulations and compare the results.

Verscharen and his team believe that their findings could help develop a set of criteria to determine which type of modeling would be most appropriate for their prediction efforts in specific situations.

"If the solar-wind parameters were a certain way, they could use MHD modeling and if not, they might be better to perform simulations based on kinetic theory," said Verscharen. "It would just provide a more efficient way to predict space weather and the solar wind."

It is still not understood why the solar wind behaves like a fluid. The researchers hope future studies will determine under which conditions the solar wind can be modeled as a fluid with MHD, and when a kinetic model would be necessary.

Research paper

SOLAR SCIENCE
Space weather model simulates solar storms from nowhere
Goddard Space Flight Center
Greenbelt MD (SPX) May 09, 2017 Our ever-changing sun continuously shoots solar material into space. The grandest such events are massive clouds that erupt from the sun, called coronal mass ejections, or CMEs. These solar storms often come first with some kind of warning - the bright flash of a flare, a burst of heat or a flurry of solar energetic particles. But another kind of storm has ... read more

Related Links
University of New Hampshire
Wind Satellite
Solar Science News at SpaceDaily


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR SCIENCE
Hong Kong 'Snowden refugees' face deportation: lawyer

Healthcare bill inspires road rage: Tenn. woman tries to run Congressman off road

New fiber-based sensor could quickly detect structural problems in bridges and dams

Marine Le Pen: far-right firebrand who has shaken up French politics

SOLAR SCIENCE
2 SOPS says goodbye to GPS satellite

Researchers working toward indoor location detection

Galileo's search and rescue service in the spotlight

Russia inaugurates GPS-type satellite station in Nicaragua

SOLAR SCIENCE
Adolescent orangoutan breastfeed for eight years

Research suggests the ideal leader resembles his or her subordinates

Grassy beginning for earliest Homo

Study shows southern Mediterranean shares genetic heritage

SOLAR SCIENCE
Malaysia seizes smuggled tortoises worth $300,000

New Zealand's penguins facing extinction, scientists warn

Cornell researches black bear boom in New York

The first microbial supertree from figure-mining thousands of papers

SOLAR SCIENCE
Hundreds of Chinese students hospitalised for norovirus: Xinhua

Can crab shells provide a 'green' solution to malaria?

Mosquito-borne viruses like Zika may be spread at lower temperatures

10-year lifespan gain for some HIV patients: study

SOLAR SCIENCE
China frees human rights lawyer on bail: Amnesty

China lawyer's wife seeks US asylum after brazen escape

China wants its anthem sung, but maybe not at parties

Chinese human rights lawyers seen as enemies of the state

SOLAR SCIENCE
UN counter-drug official kidnapped in Colombia: officials

Indian, Chinese navies rescue ship hijacked by Somali pirates

SOLAR SCIENCE








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.