Medical and Hospital News  
SPACE TRAVEL
Ultra-thin sail could speed journey to other star systems
by Staff Writers
Paris (ESA) May 20, 2020

A tiny sail made of the thinnest material known - one carbon-atom-thick graphene - has passed initial tests designed to show that it could be a viable material to make solar sails for spacecraft.

A tiny sail made of the thinnest material known - one carbon-atom-thick graphene - has passed initial tests designed to show that it could be a viable material to make solar sails for spacecraft. Light sails are one of the most promising existing space propulsion technologies that could enable us to reach other star systems within many decades.

Traditional spacecraft carry fuel to power their journeys and use complex orbital manoeuvres around other planets. But the weight of the fuel makes them difficult to launch and intricate flyby manoeuvres considerably lengthen the journey.

Solar sails need no fuel. Spacecraft equipped with them are thus much lighter and easier to launch.

Two spacecraft flown over the past decade have already demonstrated the technology, but they used sails made of polyimide and of mylar, a polyester film.

Graphene is much lighter. To test whether it could be used as a sail, researchers used a scrap just 3 millimetres across.

They dropped it from a 100-m tall tower in Bremen, Germany, to test whether it worked under vacuum and in microgravity.

Once the sail was in free-fall - effectively eliminating the effects of gravity - they shone a series of laser lights onto it, to see whether it would act as a solar sail.

Shining a 1 watt laser made the sail accelerate by up to 1 m/s2, similar to the acceleration of an office lift, but for solar sails the acceleration continues as long as sunlight keeps hitting the sails, taking spacecraft to higher and higher speeds.

"Making graphene is relatively simple and could be easily scaled up to kilometre-wide sails, though the deployment of a giant sail will be a serious challenge," says Santiago Cartamil-Bueno, leader of the GrapheneSail team and director of SCALE Nanotech, a research start-up company operating in Estonia and Germany.

SCALE Nanotech is now looking for strategic partners to scale up the technology for an eventual test in space. The product development of the sail technology is currently accelerated through ESA's Business Incubator Centre in Hessen and Baden-Wurttemberg, Germany.

Astrid Orr of ESA's human spaceflight research programme oversees physical science experiments in weightlessness for human and robotic exploration.

She says: "This project is a wonderful example of scientific research that can be performed in weightlessness without leaving Earth.

"Dropping graphene and shooting it with lasers is fascinating. To think that this research could help scientists to send instruments through the solar system and, if one dares to dream, to distant star systems in years to come is the icing on the cake."


Related Links
Human and Robotic Exploration at ESA
Space Tourism, Space Transport and Space Exploration News


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SPACE TRAVEL
NASA's new solar sail system to be tested on-board NanoAvionics' satellite
Columbia IL (SPX) Apr 30, 2020
NanoAvionics has been selected to build a 12U nanosatellite bus for an in-orbit demonstration of NASA's Advanced Composite Solar Sail System (ACS3). This a result of a contract between NASA Ames Research Center and AST for a 12U bus to carry NASA's payload into low Earth orbit (LEO) including an approximately 800 square foot (74 square meter) composite boom and solar sail system. The aim of the ACS3 mission is to replace conventional rocket propellants by developing and testing solar sails using s ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SPACE TRAVEL
Federal Resources Supply Co. awarded $134M for nursing homes' PPE

Virus-isolated silver surfers ride a new tech wave

Amazon calls for US federal law to ban price gouging

Facebook apologises for role in 2018 Sri Lanka unrest

SPACE TRAVEL
Galileo in high latitudes and harsh environments

New BeiDou satellite starts operation in network

Velodyne Lidar announces multi-year sales agreement with GeoSLAM

Galileo positioning aiding Covid-19 reaction

SPACE TRAVEL
Remnants of human migration paths may exist underwater at 'choke points'

New study records dual hand use in early human relative

Early humans thrived in this drowned South African landscape

Early hominins in China adapted to changing climate with new technology

SPACE TRAVEL
Three Russians charged in Sri Lanka for stealing wildlife, plants

Leopards spotted in Pakistan capital's park as virus clears way

US border wall threatens wildlife, lawsuit says

Canada zoo to send pandas home after bamboo shortage

SPACE TRAVEL
Roosevelt carrier holds at-sea simulations as 13 sailors positive for COVID-19 again

Hamster tests show masks reduce coronavirus spread: scientists

'Express burials' hide true COVID-19 picture in Nicaragua

Summer unlikely to curb coronavirus pandemic growth: study

SPACE TRAVEL
Hong Kong activists charged as clashes erupt in legislature

Top Tibetan official caught in China's graft net

Hong Kong police watchdog clears force over protest response

Tibetan exile govt urges China to reveal whereabouts of Panchen Lama

SPACE TRAVEL
Trump orders Pentagon to boost drug interdiction efforts

In Colombia, fleet of cartel narco-subs poses challenge for navy

SPACE TRAVEL








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.