Medical and Hospital News  
TIME AND SPACE
Understanding gravity: The nanoscale search for extra dimensions
by Staff Writers
Osaka, Japan (SPX) Mar 29, 2018

Principle of the experimental test of the inverse-square law of the gravity in nano-meter scale via neutron scattering. Deviation from the inverse-square law will be observed as the modification in the angular distribution of the scattered neutrons.

Often, practical limits control the experimental measurements that can be made, governing the difference between what we expect to be true based on the most likely predictions of models and calculations, and findings that have been supported by testing.

A team of researchers has now used the world's highest intensity neutron beamline facility, at J-PARC in central Japan, to push the limits of sensitivity for the study of gravitational force. The multicenter work probing the nm range was recently published in Physical Review D.

Most people are familiar with how things around us interact as a result of gravitational interactions. This behavior, known to follow an inverse square law (ISL), has been well explained by experiments down to less than 1 mm.

Gravitational interactions over long-distances have also been supported by data collected from astronomy. However, until now, there has been little experimental evidence to support agreement with the ISL when the often-unpredictable quantum level is approached.

"There are numerous effects suggested by accepted theories of gravity over short distance ranges that could be borne out by experiment," study author Tatsushi Shima of Osaka University says.

"By successfully extending the search range of an exotic gravity down to short distances of ~0.1 nm, we have been able to demonstrate the highest sensitivity reported to date, producing experimental data that will help to unravel the proposals."

The statistical sensitivity achieved was made possible using the high intensity pulsed neutron beam at the J-PARC facility. The net electromagnetic neutrality of neutrons means that the experiments were not influenced by the electromagnetic background that hampers other approaches to probing short distance ISL deviations.

The experiment, based on neutron-noble gas scattering, was the first time-of-flight neutron scattering study.

"As the performance of the world's most powerful beamlines improves, we are able to significantly enhance our knowledge and understanding in step," study corresponding author Tamaki Yoshioka of Kyushu University says. "Such iterative improvements can be very revealing. In the case of gravitational interactions we have made substantial steps towards understanding the dimensions of the space around us."

It is hoped that the study, along with future work to improve sensitivity even further, will help shed light on whether the space in which we live is limited to three dimensions.

Research Report: "A search for deviations from the inverse square law of gravity at nm range using a pulsed neutron beam"


Related Links
Osaka University
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TIME AND SPACE
Scientists separate atoms with smallest sieve ever
Washington (UPI) Mar 20, 2018
Scientists have found a way to turn 2D materials into a sieve capable of separating different atoms from each other. When pushed through the tiny gap between the layers of 2D materials like hexagonal boron nitride or molybdenum disulphide, the atoms of two different hydrogen isotopes can be separated. Like graphene, hexagonal boron nitride or molybdenum disulphide form sheet-like layers the width of a single atom. The 2D layers feature unique structural patterns, each with different phys ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Former Supreme Court justice backs repealing Second Amendment

In 'city of shanasheel', Iraqi heritage crumbles from neglect

Land decay to displace tens of millions, global survey warns

In the heart of Navajo country, pupils work for greener future

TIME AND SPACE
Indra Expands With Four New Stations The Ground Segment Managing Galileo Satellites

GMV leads a project for application of EGNOS to maritime safety

Why Russia is one step ahead of US Army's plans for future GPS

Europe claims 100 million users for Galileo satnav system

TIME AND SPACE
When the Mediteranean Sea flooded human settlements

Scientists discover evidence of early human innovation, pushing back evolutionary timeline

New insights into the late history of Neandertals

Illusory motion reproduced by deep neural networks trained for prediction

TIME AND SPACE
Researchers investigate if Hurricane Harvey helped fire ants spread in Texas

Structure is decisive to algae

After warnings of species plight: solutions in sight

Olive ridley turtles hatch in Mumbai after two decades

TIME AND SPACE
New model links yellow fever in Africa to climate, environment

DARPA Names Researchers Working to Halt Outbreaks in 60 Days or Less

China confirms first human case of H7N4 bird flu

UV light can kill airborne flu virus, study finds

TIME AND SPACE
Vatican-affiliated Chinese bishop arrested: report

Street art makes a splash in Hong Kong

China to reorganise propaganda efforts at home and abroad

Xi gets second term with powerful ally as VP

TIME AND SPACE
Spain arrests 155 over Chinese human trafficking ring

Off West Africa, navies team up in fight against piracy

India seeks custody of fugitive arrested in Hong Kong

Vietnam cops seize $2.5 mn heroin in China border drug bust

TIME AND SPACE








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.