Medical and Hospital News  
TIME AND SPACE
Unexpected matter found in hostile black hole winds
by Staff Writers
Evanston IL (SPX) Feb 01, 2018

The existence of large numbers of molecules in winds powered by supermassive black holes at the centers of galaxies has puzzled astronomers since they were discovered more than a decade ago. Molecules trace the coldest parts of space, and black holes are the most energetic phenomena in the universe, so finding molecules in black hole winds was like discovering ice in a furnace.

The existence of large numbers of molecules in winds powered by supermassive black holes at the centers of galaxies has puzzled astronomers since they were discovered more than a decade ago. Molecules trace the coldest parts of space, and black holes are the most energetic phenomena in the universe, so finding molecules in black hole winds was like discovering ice in a furnace.

Astronomers questioned how anything could survive the heat of the energetic outflows, but a new theory from researchers in Northwestern University's Center for Interdisciplinary Research and Exploration in Astrophysics (CIERA) predicts that these molecules are not survivors at all, but brand-new molecules, born in the winds with unique properties that enable them to adapt to and thrive in the hostile environment.

The theory, published in the Monthly Notices of the Royal Astronomical Society, is the work of Lindheimer post-doctoral fellow Alexander Richings, who developed the computer code that, for the first time, modeled the detailed chemical processes that occur in interstellar gas accelerated by radiation emitted during the growth of supermassive black holes. Claude-Andre Faucher-Giguere, who studies galaxy formation and evolution as an assistant professor in Northwestern's Weinberg College of Arts and Sciences, is a co-author.

"When a black hole wind sweeps up gas from its host galaxy, the gas is heated to high temperatures, which destroy any existing molecules," Richings said.

"By modeling the molecular chemistry in computer simulations of black hole winds, we found that this swept-up gas can subsequently cool and form new molecules."

This theory answers questions raised by previous observations made with several cutting-edge astronomical observatories including the Herschel Space Observatory and the Atacama Large Millimeter Array, a powerful radio telescope located in Chile.

In 2015, astronomers confirmed the existence of energetic outflows from supermassive black holes found at the center of most galaxies. These outflows kill everything in their path, expelling the food - or molecules - that fuel star formation. These winds are also presumed to be responsible for the existence of "red and dead" elliptical galaxies, in which no new stars can form.

Then, in 2017, astronomers observed rapidly moving new stars forming in the winds - a phenomenon they thought would be impossible given the extreme conditions in black hole-powered outflows.

New stars form from molecular gas, so Richings and Faucher-Giguere's new theory of molecule formation helps explain the formation of new stars in winds. It upholds previous predictions that black hole winds destroy molecules upon first collision but also predicts that new molecules - including hydrogen, carbon monoxide and water - can form in the winds themselves.

"This is the first time that the molecule formation process has been simulated in full detail, and in our view, it is a very compelling explanation for the observation that molecules are ubiquitous in supermassive black hole winds, which has been one of the major outstanding problems in the field," Faucher-Giguere said.

Richings and Faucher-Giguere predict that the new molecules formed in the winds are warmer and brighter in infrared radiation compared to pre-existing molecules. That theory will be put to the test when NASA launches the James Webb Space Telescope in spring 2019. If the theory is correct, the telescope will be able to map black hole outflows in detail using infrared radiation.

"The Origin of Fast Molecular Outflows in Quasars: Molecule Formation in AGN-Driven Galactic Winds," Alexander J. Richings and Claude-Andre Faucher-Giguere, 2018 March, Monthly Notices of the Royal Astronomical Society


Related Links
Northwestern University
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TIME AND SPACE
First evidence of winds outside black holes throughout their mealtimes
Edmonton, Canada (SPX) Jan 26, 2018
New research shows the first evidence of strong winds around black holes throughout bright outburst events when a black hole rapidly consumes mass. The study, published in Nature, sheds new light on how mass transfers to black holes and how black holes can affect the environment around them. The research was conducted by an international team of researchers, led by scientists in the University of Alberta's Department of Physics. Using data from three international space agencies spanning 20 ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Researchers identify 'anxiety cells' inside the brains of mice

Dutch 'ill-prepared' for cross-border nuclear accident: probe

Dutch to help tourism firms on storm-hit Caribbean isles

Stressed-out Dhaka to get 'Anger Management Park'

TIME AND SPACE
Airbus selected by ESA for EGNOS V3 program

Pentagon probes fitness-app use after map shows sensitive sites

China sends twin BeiDou-3 navigation satellites into space

18 satellites in exactEarth's real-time constellation now in service

TIME AND SPACE
Lasers reveal ancient Mayan civilization hiding beneath Guatemalan canopy

Scandinavians shaped by several waves of immigration

Study details Peking Man's teeth

Modern human brain organization emerged only recently

TIME AND SPACE
Indonesian orangutan 'beheaders' claim self-defence: police

Tasty and pink, sea urchin species may be a climate-tolerant food source

A glimpse in the flora of Southeast Asia puts a spotlight on its conservation

Lab-on-a-chip for tracking single bacterial cells

TIME AND SPACE
Plague outbreak in Madagascar revived dread of a killer

'Mutant flu' could lead to more effective vaccine: study

Scientists find new clues about 'wave after wave' of germs that killed the Aztecs

TSRI scientists discover workings of first promising Marburg virus treatment

TIME AND SPACE
Vatican's delicate China mission runs into trouble

Hong Kong democracy candidate cleared to run in fraught vote

China rights lawyer charged with 'inciting subversion'

Ex-governor urges British PM to speak out on Hong Kong in China visit

TIME AND SPACE
Thai navy says 11 million pill haul a record from Laos

TIME AND SPACE








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.