Medical and Hospital News  
TIME AND SPACE
Unlocking the secrets of the universe
by Staff Writers
Tempe AZ (SPX) Mar 01, 2018

illustration only

Long ago, about 400,000 years after the beginning of the universe (the Big Bang), the universe was dark. There were no stars or galaxies, and the universe was filled primarily with neutral hydrogen gas.

Then, for the next 50-100 million years, gravity slowly pulled the densest regions of gas together until ultimately the gas collapsed in some places to form the first stars.

What were those first stars like and when did they form? How did they affect the rest of the universe? These are questions astronomers and astrophysicists have long pondered.

Now, after 12 years of experimental effort, a team of scientists, led by ASU School of Earth and Space Exploration astronomer Judd Bowman, has detected the fingerprints of the earliest stars in the universe. Using radio signals, the detection provides the first evidence for the oldest ancestors in our cosmic family tree, born by a mere 180 million years after the universe began.

"There was a great technical challenge to making this detection, as sources of noise can be a thousand times brighter than the signal - it's like being in the middle of a hurricane and trying to hear the flap of a hummingbird's wing." says Peter Kurczynski, the National Science Foundation program officer who supported this study. "These researchers with a small radio antenna in the desert have seen farther than the most powerful space telescopes, opening a new window on the early universe."

Radio Astronomy
To find these fingerprints, Bowman's team used a ground-based instrument called a radio spectrometer, located at the Australia's national science agency (CSIRO) Murchison Radio-astronomy Observatory (MRO) in Western Australia. Through their Experiment to Detect the Global EoR Signature (EDGES), the team measured the average radio spectrum of all the astronomical signals received across most of the southern-hemisphere sky and looked for small changes in power as a function of wavelength (or frequency).

As radio waves enter the ground-based antenna, they are amplified by a receiver, and then digitized and recorded by computer, similar to how FM radio receivers and TV receivers work. The difference is that the instrument is very precisely calibrated and designed to perform as uniformly as possible across many radio wavelengths.

The signals detected by the radio spectrometer in this study came from primordial hydrogen gas that filled the young universe and existed between all the stars and galaxies. These signals hold a wealth of information that opens a new window on how early stars - and later, black holes, and galaxies - formed and evolved.

"It is unlikely that we'll be able to see any earlier into the history of stars in our lifetimes," says Bowman. "This project shows that a promising new technique can work and has paved the way for decades of new astrophysical discoveries."

This detection highlights the exceptional radio quietness of the MRO, particularly as the feature found by EDGES overlaps the frequency range used by FM radio stations. Australian national legislation limits the use of radio transmitters within 161.5 miles (260 km) of the site, substantially reducing interference which could otherwise drown out sensitive astronomy observations.

The results of this study have been recently published in Nature by Bowman, with co-authors Alan Rogers of the Massachusetts Institute of Technology's Haystack Observatory, Raul Monsalve of the University of Colorado, and Thomas Mozdzen and Nivedita Mahesh also of ASU's School of Earth and Space Exploration.

Unexpected results
The results of this experiment confirm the general theoretical expectations of when the first stars formed and the most basic properties of early stars.

"What's happening in this period," says co-author Rogers of MIT's Haystack Observatory, "is that some of the radiation from the very first stars is starting to allow hydrogen to be seen. It's causing hydrogen to start absorbing the background radiation, so you start seeing it in silhouette, at particular radio frequencies. This is the first real signal that stars are starting to form, and starting to affect the medium around them."

The team originally tuned their instrument to look later in cosmic time, but in 2015 decided to extend their search. "As soon as we switched our system to this lower range, we started seeing things that we felt might be a real signature," Rogers says. "We see this dip most strongly at about 78 megahertz, and that frequency corresponds to roughly 180 million years after the Big Bang," Rogers says. "In terms of a direct detection of a signal from the hydrogen gas itself, this has got to be the earliest."

The study also revealed that gas in the universe was probably much colder than expected (less than half the expected temperature). This suggests that either astrophysicists' theoretical efforts have overlooked something significant or that this may be the first evidence of non-standard physics: Specifically, that baryons (normal matter) may have interacted with dark matter and slowly lost energy to dark matter in the early universe, a concept that was originally proposed by Rennan Barkana of Tel Aviv University.

"If Barkana's idea is confirmed," says Bowman, "then we've learned something new and fundamental about the mysterious dark matter that makes up 85 percent of the matter in the universe, providing the first glimpse of physics beyond the standard model."

The next steps in this line of research are for another instrument to confirm this team's detection and to keep improving the performance of the instruments, so that more can be learned about the properties of early stars. "We worked very hard over the last two years to validate the detection," says Bowman, "but having another group confirm it independently is a critical part of the scientific process."

Bowman would also like to see an acceleration of efforts to bring on new radio telescopes like the Hydrogen Epoch of Reionization Array (HERA) and the Owens Valley Long Wavelength Array (OVRO-LWA).

"Now that we know this signal exists," says Bowman, "we need to rapidly bring online new radio telescopes that will be able to mine the signal much more deeply."

The antennas and portions of the receiver used in this experiment were designed and constructed by Rogers and the MIT Haystack Observatory team. The ASU team and Monsalve added the automated antenna reflection measurement system to the receiver, outfitted the control hut with the electronics, constructed the ground plane and conducted the field work for the project. The current version of EDGES is the result of years of design iteration and ongoing detailed technical refinement of the calibration instrumentation to reach the levels of precision necessary for successfully achieving this difficult measurement.


Related Links
Arizona State University
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TIME AND SPACE
The possibility of vestiges of an earlier Universe before the Big Bang
Sao Paulo, Brazil (SPX) Nov 28, 2017
Although for five decades, the Big Bang theory has been the best known and most accepted explanation for the beginning and evolution of the Universe, it is hardly a consensus among scientists. Brazilian physicist Juliano Cesar Silva Neves part of a group of researchers who dare to imagine a different origin. In a study recently published in the journal General Relativity and Gravitation, Neves suggests the elimination of a key aspect of the standard cosmological model: the need for a spacetime sin ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
L'Aquila, a quake-hit city still grateful to Berlusconi

For the love of gun: US couples take weapons to church

Indonesia calls off deadly landslide search, 18 believed dead

Venezuela's woes spread to zoos as animals feed on each other

TIME AND SPACE
Why Russia is one step ahead of US Army's plans for future GPS

Europe claims 100 million users for Galileo satnav system

Airbus selected by ESA for EGNOS V3 program

Pentagon probes fitness-app use after map shows sensitive sites

TIME AND SPACE
Seeing the brain's electrical activity

Buried at the stake: Underwater burial site yields skulls on poles

Brain can navigate based solely on smells

Chimps and bonobos don't need a translator

TIME AND SPACE
Malaysia elephant sanctuary trumpets effort to cut human-animal conflict

Mexican troops partner with activists to save vaquita porpoise

Indonesian woman mauled to death by crocodile

Birds are essential to the dispersion of rare wild chili pepper seeds

TIME AND SPACE
DARPA Names Researchers Working to Halt Outbreaks in 60 Days or Less

China confirms first human case of H7N4 bird flu

UV light can kill airborne flu virus, study finds

Playing 20 Questions with Bacteria to Distinguish Harmless Organisms from Pathogens

TIME AND SPACE
China's Xi takes another stride in Mao's footsteps

China investigates former top politician

In China's eSport schools students learn it pays to play

China takes over Anbang, prosecutes ex-boss for 'economic crimes'

TIME AND SPACE
India seeks custody of fugitive arrested in Hong Kong

Vietnam cops seize $2.5 mn heroin in China border drug bust

The roots of Italian mafia lie in the lemon industry, new research suggests

Thai navy says 11 million pill haul a record from Laos

TIME AND SPACE








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.