. Medical and Hospital News .




EARLY EARTH
Untangling life's origins
by Staff Writers
Urbana IL (SPX) Mar 13, 2013


File image.

Researchers in the Evolutionary Bioinformatics Laboratory at the University of Illinois in collaboration with German scientists have been using bioinformatics techniques to probe the world of proteins for answers to questions about the origins of life.

Proteins are formed from chains of amino acids and fold into three-dimensional structures that determine their function. According to crop sciences professor Gustavo Caetano-Anolles, very little is known about the evolutionary drivers for this folding.

In collaboration with scientists at the Heidelberg Institute for Theoretical Studies, he has been working at the interface of molecular evolution and molecular dynamics, looking back to when proteins first appeared approximately 3.8 billion years ago to determine changes in folding speed over time.

To do this, they looked at all known protein structures as defined in the Structural Classification of Proteins (SCOP) database and mined their presence in 989 fully sequenced genomes. In a previous study, researchers in Caetano-Anolles's group used SCOP and genomic information to reconstruct phylogenomic trees that describe the history of the protein world. The current research is based on these types of trees.

"They are not the standard trees that people see in phylogenetic analysis," he said. "In phylogenetic analysis, usually the tips of the trees, the leaves, are organisms or microbes. In these, they are entire biological systems."

In contrast, the leaves of these new trees are protein domains, which are compact evolutionary units of structure and function. Proteins are usually complex combinations of several domains.

"We have a world of about 90,000 of these structures, but they seem to be always producing the same designs," he said. Over the last 10 years, he has been part of the effort to map these designs, or folds, because they are determined by the way the protein chains fold on themselves. To date, approximately 1,300 folds have been characterized.

For the current study, the researchers identified protein sequences in the genomes that had the same folding structure as known proteins. They then used bioinformatics techniques to compare them to each other on a time scale to determine when proteins became part of a particular organism. This allowed them to map protein structures and organisms onto a timeline.

Directly calculating the folding speed for all of these proteins would be impossible with today's technology, so the researchers took advantage of the fact that a protein always folds at the same points and used a measure called Size Modified Contact Order (SMCO).

Contact order is the ability of a protein to establish links between segments of the polypeptide chain. When points that are close together on the chain come together, they generally form helical structures; when distant points come together, they form beta strands that interact with each other and form sheets. Contact order measures how many of the connections are local and how many are distant. Experimental studies have shown that it is correlated with folding speed. The measure is normalized (size modified) to take protein length, which affects folding speed, into account.

They saw a peculiar pattern in the results.
"What we see is an hourglass," said Caetano-Anolles. "At the beginning, proteins seem not to be folding so fast. And then, as time progresses, there's a tendency to fold faster and faster. And then it reaches a critical point, and at this point we have a tendency that reverses, that seems to go back again to slow folding." However, the tendency toward higher speed dominates.

This point coincides with what he calls the "Big Bang" in protein evolution. Approximately 1.5 billion years ago, more complex domain structures and multi-domain proteins emerged with the appearance of multicellular organisms. Amino acid chains, which make up proteins, also became shorter at this point in time.

Why does folding speed matter?
"If the protein does not fold, in the vast majority of cases it will not have a function. So folding implies functionality. And speed of folding implies speed of achieving that functionality," he explained. "For a cell, that's very important, because if proteins are very slow folders, there is a time lag to when that function will be accessible to the cell."

Fast folders are also less susceptible to aggregation, or clumping together, so they work faster. Moreover, proteins that fold rapidly are more likely to fold correctly. Protein misfolding has been linked with diseases such as Alzheimer's.

Caetano-Anolles said, however, that this research makes an important contribution to understanding how molecules work. "The complexities of the biological functions of molecules are still poorly understood," he said.

"If we mix the world of molecular dynamics with the world of molecular evolution, we can then determine what aspects of sequences are important for molecular dynamics, and therefore, we can apply them to genetic engineering, synthetic biology, and so on."

.


Related Links
University of Illinois College of Agricultural, Consumer and Environmental Sciences
Explore The Early Earth at TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Get Our Free Newsletters
Space - Defense - Environment - Energy - Solar - Nuclear

...





EARLY EARTH
UF scientists discover new crocodilian, hippo-like species from Panama
Gainesville FL (SPX) Mar 11, 2013
University of Florida paleontologists have discovered remarkably well-preserved fossils of two crocodilians and a mammal previously unknown to science during recent Panama Canal excavations that began in 2009. The two new ancient extinct alligator-like animals and an extinct hippo-like species inhabited Central America during the Miocene about 20 million years ago. The research expands the ... read more


EARLY EARTH
Walker's World: The best news yet

US welcomes Albania offer to resettle Iran exiles

US military member suing over Japan nuke disaster

Technology Changing The Future of Home Security

EARLY EARTH
Galileo fixes Europe's position in history

China city searching for 'modern Marco Polo'

Milestone for European navigation system

China targeting navigation system's global coverage by 2020

EARLY EARTH
Neanderthal demise down to eye size?

New study validates longevity pathway

Siberian fossil revealed to be one of the oldest known domestic dogs

Kirk, Spock together: Putting emotion, logic into computational words

EARLY EARTH
Are cars driving evolution of birds?

Energy from the interior of the Earth supports life in a global ecosystem

'Bonobo heaven': life at a DR Congo ape sanctuary

Governments boost support for elephants and sharks

EARLY EARTH
New research paper says we are still at risk of the plague

Battling AIDS stigma in Morocco's religious heartlands

Ten years on, the SARS outbreak that changed Hong Kong

French patients keep HIV at bay despite stopping drugs

EARLY EARTH
China's new president calls for 'great renaissance'

Obama reaches out to China's new president

Show of ethnic harmony at China legislature

US Senator Rubio says China 'tortures' its people

EARLY EARTH
US court convicts Somali pirates in navy ship attack

Ukraine to join NATO anti-piracy mission

16 gunmen killed in Thai military base attack: army

Japan police arrest mobster in Fukushima clean-up

EARLY EARTH
HSBC mulls thousands more job cuts: report

Commentary: Rags to riches to rags

Bank of China chairman resigns

New US Treasury chief Lew to visit China




The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement