Medical and Hospital News  
WATER WORLD
Using statistics to predict rogue waves
by Staff Writers
Washington DC (SPX) Mar 15, 2016


'Rogue' waves are large and spontaneous waves which occur in the open water, and can be extremely dangerous, even to large ships and ocean liners. They are typically defined by oceanographers as waves whose height is twice the 'significant wave height' - itself defined as the average of the largest third of the waves in the current sea state.

Scientists have developed a mathematical model to derive the probability of extreme waves. This model uses multi-point statistics, the joint statistics of multiple points in time or space, to predict how likely extreme waves are.

The results, published in the New Journal of Physics, demonstrate that evolution of these probabilities obey a well-known function, greatly reducing the complexity of the results. "It's common in science and engineering to consider noise and fluctuations as something we need to avoid or eliminate in order to gain the best results" explains Matthias Wachter, an author on the paper. "For us, understanding noise and fluctuations is helpful for understanding complex systems."

'Rogue' waves are large and spontaneous waves which occur in the open water, and can be extremely dangerous, even to large ships and ocean liners. They are typically defined by oceanographers as waves whose height is twice the 'significant wave height' - itself defined as the average of the largest third of the waves in the current sea state.

"Multi-point statistics allows us to capture a high level of complexity, such as wave heights or turbulent air flows" continues Wachter. "A key point of our work is that we were able to reduce the complexity of these so that they obey the well-known Fokker-Planck equation."

Sadly, it is unlikely that this approach could be applied to Tsunami-type events. "Typically, a Tsunami is the consequence of an isolated earthquake event" explains Wachter. "It is likely that their statistics differ significantly from common ocean waves, so this approach cannot capture them."

Further work remains for the researchers to extend the range of these predictions to a scale of minutes or hours. They are also working on expanding their model to encompass atmospheric wind data.

"This has tremendous practical relevance in wind energy applications, where knowing about an impending large gust of wind will help wind turbines adjust their operation accordingly" concludes Wachter. "But there is still a lot of research to do!"

The researchers would like to acknowledge the support of the Volkswagen Foundation, and their fruitful collaboration with Norbert Hoffman and partners in the project "Extreme Ocean Gravity Waves".

Research paper: "Oceanic El-Nino wave dynamics and climate networks" (Wang et al 2016 New J. Phys. 18 033021)


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
IOP Publishing
Water News - Science, Technology and Politics






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
WATER WORLD
Major source of methanol in the ocean identified
Cape Cod MA (SPX) Mar 14, 2016
As one of the most abundant organic compounds on the planet, methanol occurs naturally in the environment as plants release it as they grow and decompose. It is also found in the ocean, where it is a welcome food source for ravenous microbes that feast on it for energy and growth. While scientists have long known methanol exists in the ocean, and that certain microbes love to snack on it, ... read more


WATER WORLD
Cuban exodus leaves elderly behind

Five NATO ships in Aegean migrant mission

Fukushima mistakes linger as Japan marks 5th anniversary

Japan marks 2011 earthquake, tsunami, nuclear disaster

WATER WORLD
India to Launch Sixth Navigational Satellite on Thursday

Lockheed Martin building next generation of military GPS satellites

Traffic app says not at fault for Israel troops losing way

ESA helping to keep transport systems on track

WATER WORLD
Dalai Lama urges education reform to end human cruelty

Early human habitat, recreated for first time, shows life was no picnic

Early human habitat model reveals a dangerous existence

Meat, food processing key to early human evolution

WATER WORLD
Real-life aliens extremely efficient at turning their hosts into new parasites

Louisiana black bear is removed from US 'endangered' list

Syntax is not unique to human language

Division of labor in social insects

WATER WORLD
Testing the evolution of resistance by experiment

Google teams with UNICEF to map Zika virus spread

Single antibody from human survivor protects nonhuman primates against Ebola virus

Brazil military fight mosquitoes, flower pot to flower pot

WATER WORLD
Beijing defends itself on rights 'with Chinese characteristics'

China slammed at UN over crackdown on activists, lawyers

Equal rites: Tibetan nuns seek matching status

Rights groups warn KFC over Tibet opening

WATER WORLD
Two Mexican marines, suspect killed in shootout

WATER WORLD
China's industrial output growth wanes

China bank lending plummets in February despite loosening

Want a better government? Raise taxes, study suggests

China consumer inflation jumps in February









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.