Medical and Hospital News  
TIME AND SPACE
Using the K computer, scientists predict exotic 'di-Omega' particle
by Staff Writers
Tokyo, Japan (SPX) May 29, 2018

illustration only

Based on complex simulations of quantum chromodynamics performed using the K computer, one of the most powerful computers in the world, the HAL QCD Collaboration, made up of scientists from the RIKEN Nishina Center for Accelerator-based Science and the RIKEN Interdisciplinary Theoretical and Mathematical Sciences (iTHEMS) program, together with colleagues from a number of universities, have predicted a new type of "dibaryon" - a particle that contains six quarks instead of the usual three. Studying how these elements form could help scientists understand the interactions among elementary particles in extreme environments such as the interiors of neutron stars or the early universe moments after the Big Bang.

Particles known as "baryons" - principally protons and neutrons - are composed of three quarks bound tightly together, with their charge depending on the "color" of the quarks that make them up. A dibaryon is essentially a system with two baryons. There is one known dibaryon in nature - deuteron, a deuterium (or heavy-hydrogen) nucleus that contains a proton and a neutron that are very lightly bound. Scientists have long wondered whether there could be other types of dibaryons. Despite searches, no other dibaryon has been found.

The group, in work published in Physical Review Letters, has now used powerful theoretical and computational tools to predict the existence of a "most strange" dibaryon, made up of two "Omega baryons" that contain three strange quarks each. They named it "di-Omega". The group also suggested a way to look for these strange particles through experiments with heavy ion collisions planned in Europe and Japan.

The finding was made possible by a fortuitous combination of three elements: better methods for making QCD calculations, better simulation algorithms, and more powerful supercomputers.

The first essential element was a new theoretical framework called the "time-dependent HAL QCD method": It allows researchers to extract the force acting between baryons from the large volume of numerical data obtained using the K computer.

The second element was a new computational method, the unified contraction algorithm, which allows much more efficient calculation of a system with a large number of quarks.

The third element was the advent of powerful supercomputers. According to Shinya Gongyo from the RIKEN Nishina Center, "We were very lucky to have been able to use the K computer to perform the calculations. It allowed fast calculations with a huge number of variables. Still, it took almost three years for us to reach our conclusion on the di-Omega."

Discussing the future, Tetsuo Hatsuda from RIKEN iTHEMS says, "We believe that these special particles could be generated by the experiments using heavy ion collisions that are planned in Europe and in Japan, and we look forward to working with colleagues there to experimentally discover the first dibaryon system outside of deuteron.

"This work could give us hints for understanding the interaction among strange baryons (called hyperons) and to understand how, under extreme conditions like those found in neutron stars, normal matter can transition to what is called hyperonic matter - made up of protons, neutrons, and strange-quark particles called hyperons, and eventually to quark matter composed of up, down and strange quarks."

Research paper


Related Links
RIKEN
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TIME AND SPACE
Physicists leap into quantum computing with first simulations of atomic nucleus
Oak Ridge TN (SPX) May 28, 2018
Scientists at the Department of Energy's Oak Ridge National Laboratory are the first to successfully simulate an atomic nucleus using a quantum computer. The results, published in Physical Review Letters, demonstrate the ability of quantum systems to compute nuclear physics problems and serve as a benchmark for future calculations. Quantum computing, in which computations are carried out based on the quantum principles of matter, was proposed by American theoretical physicist Richard Feynman in th ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
China floods to hit US economy: Climate effects through trade chains

'Our families would be killed': Rohingya brace for monsoon

Navy captain accused in deadly Tunisia migrant boat sinking

Arkema's Texas plant unprepared for Harvey floods, inquiry finds

TIME AND SPACE
China to launch two BeiDou-2 backup satellites

China to launch another 11 BeiDou-3 satellites in 2018

Research shows how 'navigational hazards' in metro maps confuse travelers

UK set to demand EU repayment in Brexit satellite row

TIME AND SPACE
Chimpanzee calls differ according to context

Prehistoric people also likely disrupted by environmental change

'Uniquely human' muscles have been discovered in apes

Trait tied to autism may explain emergence of realistic art

TIME AND SPACE
How coyotes conquered the continent

Bolivia's Madidi National Park is most biodiverse in the world

Montana State laser technology could help Yellowstone battle invasive trout

Giant invasive flatworms found in France, French territories

TIME AND SPACE
Could we predict the next Ebola outbreak by tracking the migratory patterns of bats?

Limiting global warming could avoid millions of dengue fever cases

Deadly malaria's evolution revealed

New portable malaria screening instrument developed

TIME AND SPACE
Chinese police handling of teacher protest sparks fury; Merkel met wives of jailed China lawyers

Hundreds march in Hong Kong to mark Tiananmen crackdown

China jails Tibetan-language advocate for 5 years

A shipwreck and an 800-year-old 'made in China' label reveal lost history

TIME AND SPACE
Three Mexican soldiers killed in ambush

US targets Chinese fentanyl 'kingpin' with sanctions

Singaporean guilty of sophisticated exam cheating plot

S. Korea deploys warship to Ghana after pirates kidnap sailors

TIME AND SPACE








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.