. Medical and Hospital News .




.
STELLAR CHEMISTRY
Was Kepler's Supernova Unusually Powerful?
by Staff Writers
Boston MA (SPX) Sep 13, 2012

Credits: X-ray: NASA/CXC/SAO/D.Patnaude, Optical: DSS.

In 1604, a new star appeared in the night sky that was much brighter than Jupiter and dimmed over several weeks. This event was witnessed by sky watchers including the famous astronomer Johannes Kepler. Centuries later, the debris from this exploded star is known as the Kepler supernova remnant. Astronomers have long studied the Kepler supernova remnant and tried to determine exactly what happened when the star exploded to create it.

New analysis of a long observation from NASA's Chandra X-ray Observatory is providing more clues. This analysis suggests that the supernova explosion was not only more powerful, but might have also occurred at a greater distance, than previously thought.

This image shows the Chandra data derived from more than eight days worth of observing time. The X-rays are shown in five colors from lower to higher energies: red, yellow, green, blue, and purple. These various X-ray slices were then combined with an optical image from the Digitized Sky Survey, showing stars in the field.

Previous analysis of this Chandra image has determined that the stellar explosion that created Kepler was what astronomers call a "Type Ia" supernova. This class of supernovas occurs when a white dwarf gains mass, either by pulling gas off a companion star or merging with another white dwarf, until it becomes unstable and is destroyed by a thermonuclear explosion.

Unlike other well-known Type Ia supernovas and their remnants, Kepler's debris field is being strongly shaped by what it is running into. More specifically, most Type Ia supernova remnants are very symmetrical, but the Kepler remnant is asymmetrical with a bright arc of X-ray emission in its northern region. This indicates the expanding ball of debris from the supernova explosion is plowing into the gas and dust around the now-dead star.

The bright X-ray arc can be explained in two ways. In one model, the pre-supernova star and its companion were moving through the interstellar gas and losing mass at a significant rate via a wind, creating a bow shock wave similar to that of a boat moving through water. Another possibility is that the X-ray arc is caused by debris from the supernova expanding into an interstellar cloud of gradually increasing density.

The wind and bow shock model described above requires that the Kepler supernova remnant is located at a distance of more than 23,000 light years. In the latter alternative, the gas into which the remnant is expanding has higher density than average, and the distance of the remnant from the earth is between about 16,000 and 20,000 light years. Both alternatives give greater distances than the commonly used value of 13,000 light years.

In either model, the X-ray spectrum - that is, the amount of X-rays produced at different energies - reveals the presence of a large amount of iron, and indicates an explosion more energetic than the average Type Ia supernova. Additionally, to explain the observed X-ray spectrum in this model, a small cavity must have been cleared out around the star before it exploded.

Such a cavity, which would have a diameter less than a tenth that of the remnant's current size, might have been produced by a fast, dense outflow from the surface of the white dwarf before it exploded, as predicted by some models of Type Ia supernovas.

Evidence for an unusually powerful Type Ia supernova has previously been observed in another remnant with Chandra and an optical telescope. These results were independently verified by subsequent observations of light from the original supernova explosion that bounced off gas clouds, a phenomenon called light echoes. This other remnant is located in the Large Magellanic Cloud, a small galaxy about 160,000 light years from Earth, making it much farther away than Kepler and therefore more difficult to study.

These results were published in the September 1st, 2012 edition of The Astrophysical Journal. The authors of this study are Daniel Patnaude from the Smithsonian Astrophysical Observatory in Cambridge, MA; Carles Badenes from University of Pittsburgh in Pittsburgh, PA; Sangwook Park from the University of Texas at Arlington, TX, and Martin Laming from the Naval Research Laboratory in Washington DC.

NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra's science and flight operations from Cambridge, Mass.

Related Links
Chandra at Harvard
Stellar Chemistry, The Universe And All Within It




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries




.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



STELLAR CHEMISTRY
Notre Dame astrophysicists publish new approach to cosmic lithium in the early universe
Notre Dame IN (SPX) Sep 12, 2012
J. Christopher Howk, Nicolas Lehner and Grant Mathews of the Center for Astrophysics at the University of Notre Dame published a paper this week in the journal Nature titled "Observation of interstellar lithium in the low-metallicity Small Magellanic Cloud." The astrophysicists have explored a discrepancy between the amount of lithium predicted by the standard models of elemental production duri ... read more


STELLAR CHEMISTRY
Norway supplies $168M for famine relief

Haunting 'Land of Hope' part shot on location in Fukushima

Japan slams brakes on $63 billion in spending

25 killed in ammunition depot blast in western Turkey: army

STELLAR CHEMISTRY
Countdown: a month to go to Galileo's next launch

Monitech Announces Zero-Installation Tracking System for Automotive Industry

Lockheed Martin and Raytheon Complete First Launch Exercise for Next Generation GPS Satellites

Northrop Grumman to Supply Bridge Navigation Systems for Swire Group's Dry Cargo Ships

STELLAR CHEMISTRY
Some gains but many mysteries as Alzheimer's epidemic looms

Stress breaks loops that hold short-term memory together

How early social deprivation impairs long-term cognitive function

Mapping a genetic world beyond genes

STELLAR CHEMISTRY
100 most threatened species

Wild animals on the increase in Switzerland

Crows react to threats in human-like way

Progress claimed in quest to clone mammoth

STELLAR CHEMISTRY
Cambodians fight malaria with the push of a button

Yosemite extends hantavirus alert to 230,000

Precautions for Tick-Borne Disease Extend "Beyond Lyme"

Influenza research: Can dynamic mapping reveal clues about seasonality?

STELLAR CHEMISTRY
Chinese man wrongly sent to labour camp: panel

H.K. students protest over 'brainwashing' classes

China villager bombs local government office

China's Wen says property controls still needed: Xinhua

STELLAR CHEMISTRY
Nigeria navy retakes control of hijacked oil tanker

EU Naval Force Somalia warns ship owners

Mexico captures Gulf Cartel leader: navy

EU-NATO forces free hijacked vessel

STELLAR CHEMISTRY
Hong Kong warns of property bubble from Fed plan

Risks ahead if Asia to drive world growth: experts

Walker's World: Can Draghi's plan succeed?

China's Wen vows to boost growth, defends legacy


Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement