. Medical and Hospital News .




TECH SPACE
Weizmann Institute Scientists observe quantum effects in cold chemistry
by Staff Writers
Tel Aviv, Israel (SPX) Oct 12, 2012

illustration only

At very low temperatures, close to absolute zero, chemical reactions may proceed at a much higher rate than classical chemistry says they should - because in this extreme chill, quantum effects enter the picture.

A Weizmann Institute team has now confirmed this experimentally; their results would not only provide insight into processes in the intriguing quantum world in which particles act as waves, it might explain how chemical reactions occur in the vast frigid regions of interstellar space.

Long-standing predictions are that quantum effects should allow the formation of a transient bond - one that will force colliding atoms and molecules to orbit each other, instead of separating after the collision. Such a state would be very important, as orbiting atoms and molecules could have multiple chances to interact chemically. In this theory, a reaction that would seem to have a very low probability of occurring would proceed very rapidly at certain energies.

Dr. Ed Narevicius and his team in the Institute's Chemical Physics Department managed, for the first time, to experimentally confirm this elusive process in a reaction they performed at chilling temperatures of just a fraction of a degree above the absolute zero - 0.01K. Their results appeared this week in Science.

"The problem," says Narevicius, "is that in classical chemistry, we think of reactions in terms of colliding billiard balls held together by springs on the molecular level.

In the classical picture, reaction barriers block those billiard balls from approaching one another, whereas in the quantum physics world, reaction barriers can be penetrated by particles, as these acquire wave-like qualities at ultra-low temperatures."

The quest to observe quantum effects in chemical reactions started over half a century ago with pioneering experiments by Dudley Herschbach and Yuan T. Lee, who later received a Nobel Prize for their work. They succeeded in observing chemical reactions at unprecedented resolution by colliding two low-temperature, supersonic beams.

However, the collisions took place at relative speeds that were much too high to resolve many quantum effects: When two fast beams collide, the relative velocity sets the collision temperature at above 100K, much too warm for quantum effects to play a significant role.

Over the years, researchers had used various ingenious techniques, including changing the angle of the beams and slowing them down to a near-halt. These managed to bring the temperatures down to around 5K - close, but still a miss for those seeking to observe chemical reactions in quantum conditions.

The innovation that Narevicius and his team, including Alon B. Henson, Sasha Gersten, Yuval Shagam and Julia Narevicius, introduced was to merge the beams rather than collide them. One beam was produced in a straight line, and the second beam was bent using a magnetic device until it was parallel with the first.

Even though the beams were racing at high-speed, the relative speed of the particles in relation to the others was zero. Thus a much lower collision temperature of only 0.01 K could be achieved.

One beam contained helium atoms in an excited state, the other either argon atoms or hydrogen molecules. In the ensuing chemical reaction, the argon or hydrogen molecules became ionized - releasing electrons.

To see if quantum phenomena were in play, the researchers looked at reaction rates - a measure of how fast a reaction proceeds - at different collision energies. At high collision energies, classical effects dominated and the reaction rates slowed down gradually as the temperature dropped.

But below about 3K, the reaction rate in the merged beams suddenly took on peaks and valleys. This is a sign that a quantum phenomenon known as scattering resonances due to tunneling was occurring in the reactions.

At low energies, particles started behaving as waves: Those waves that were able to tunnel through the potential barrier interfered constructively with the reflected waves upon collision. This creates a standing wave that corresponds to particles trapped in orbits around one another. Such interference occurs at particular energies and is marked by a dramatic increase in reaction rates.

Narevicius: "Our experiment is the first proof that the reaction rate can change dramatically in the cold reaction regime. Beyond the surprising results, we have shown that such measurements can serve as an ultrasensitive probe for reaction dynamics. Our observations already prove that our understanding of even the simplest ionization reaction is far from complete; it requires a thorough rethinking and the construction of better theoretical models. We expect that our method will be used to solve many puzzles in reactions that are especially relevant to interstellar chemistry, which generally occurs at ultra-low temperatures."

Related Links
Weizmann Institute of Science
Space Technology News - Applications and Research




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries




.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



TECH SPACE
Photonic gels are colorful sensors
Houston TX (SPX) Oct 11, 2012
Materials scientists at Rice University and the Massachusetts Institute of Technology (MIT) have created very thin color-changing films that may serve as part of inexpensive sensors for food spoilage or security, multiband optical elements in laser-driven systems and even as part of high-contrast displays. The new work led by Rice materials scientist Ned Thomas combines polymers into a uni ... read more


TECH SPACE
Planning can cut costs of disasters: World Bank

12 Chinese workers killed, 24 hurt in dormitory blaze

Far, far beyond wrist radios

World leaders meet on disaster management in Japan

TECH SPACE
Soyuz is given the "go" for tomorrow's Arianespace launch with a pair of Galileo navigation spacecraft

Apple had warning of mapping problems

Using LabSat in the absence of GPS

New Telit GPS Miniature Receiver Based on Latest 3-D Embedded Technology is Market's Smallest

TECH SPACE
New human neurons from adult cells right there in the brain

Dating encounters between modern humans and Neandertals

Last speaker of 'fisherfolk' dialect dies

Compelling evidence that brain parts evolve independently

TECH SPACE
Sitting on top of the world

US zoo cites liver disease in baby panda's death

Cambrian fossil pushes back evolution of complex brains

Swimming with hormones: Researchers unravel ancient urges that drive the social decisions of fish

TECH SPACE
Glowing DNA invention points towards high speed disease detection

Mosquito genetics may offer clues to malaria control

Moving forward with controversial H5N1 research

'Brain-eating' amoeba kills 10 in Pakistan: officials

TECH SPACE
Liu still China's invisible man two years after Nobel

China bloggers expose more corruption: reports

'Stunned' Mo Yan welcomes Nobel prize

Mo Yan of China wins Nobel Literature Prize

TECH SPACE
Dutch navy detains alleged Somali pirates after attack

Colombia hopes FARC deal will bring peace

Mexico captures Zetas cartel capo 'El Taliban': navy

Indian state in grip of a drug epidemic

TECH SPACE
China bank lending pulls back in September

IMF wants to give Greece two more years on deficit

China economy to dodge hard landing: IMF

China central bank focused on inflation before growth


Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement