Medical and Hospital News  
IRON AND ICE
What's Inside Ceres? New Findings from Gravity Data
by Staff Writers
Pasadena CA (JPL) Aug 08, 2016


This artist's concept shows a diagram of how the inside of Ceres could be structured, based on data about the dwarf planet's gravity field from NASA's Dawn mission. Image courtesy NASA/JPL-Caltech/UCLA/MPS/DLR/IDA. For a larger version of this image please go here.

In the tens of thousands of photos returned by NASA's Dawn spacecraft, the interior of Ceres isn't visible. But scientists have powerful data to study Ceres' inner structure: Dawn's own motion.

Since gravity dominates Dawn's orbit at Ceres, scientists can measure variations in Ceres' gravity by tracking subtle changes in the motion of the spacecraft. Using data from Dawn, scientists have mapped the variations in Ceres' gravity for the first time in a new study in the journal Nature, which provides clues to the dwarf planet's internal structure.

"The new data suggest that Ceres has a weak interior, and that water and other light materials partially separated from rock during a heating phase early in its history," said Ryan Park, the study's lead author and the supervisor of the solar system dynamics group at NASA's Jet Propulsion Laboratory, Pasadena, California.

Ceres' gravity field is measured by monitoring radio signals sent to Dawn, and then received back on Earth, by NASA's Deep Space Network. This network is a collection of large antennas at three locations around the globe that communicate with interplanetary spacecraft. Using these signals, scientists can measure the spacecraft's speed to a precision of 0.004 inches (0.1 millimeters) per second, and then calculate the details of the gravity field.

Ceres has a special property called "hydrostatic equilibrium," which was confirmed in this study. This means that Ceres' interior is weak enough that its shape is governed by how it rotates. Scientists reached this conclusion by comparing Ceres' gravity field to its shape. Ceres' hydrostatic equilibrium is one reason why astronomers classified the body as a dwarf planet in 2006.

The data indicate that Ceres is "differentiated," which means that it has compositionally distinct layers at different depths, with the densest layer at the core. Scientists also have found that, as they suspected, Ceres is much less dense than Earth, the moon, giant asteroid Vesta (Dawn's previous target) and other rocky bodies in our solar system. Additionally, Ceres has long been suspected to contain low-density materials such as water ice, which the study shows separated from the rocky material and rose to the outer layer along with other light materials.

"We have found that the divisions between different layers are less pronounced inside Ceres than the moon and other planets in our solar system," Park said. "Earth, with its metallic crust, semi-fluid mantle and outer crust, has a more clearly defined structure than Ceres," Park said.

Scientists also found that high-elevation areas on Ceres displace mass in the interior. This is analogous to how a boat floats on water: the amount of displaced water depends on the mass of the boat. Similarly, scientists conclude that Ceres' weak mantle can be pushed aside by the mass of mountains and other high topography in the outermost layer as though the high-elevation areas "float" on the material below. This phenomenon has been observed on other planets, including Earth, but this study is the first to confirm it at Ceres.

The internal density structure, based on the new gravity data, teaches scientists about what internal processes could have occurred during the early history of Ceres. By combining this new information with previous data from Dawn about Ceres' surface composition, they can reconstruct that history: Water must have been mobile in the ancient subsurface, but the interior did not heat up to the temperatures at which silicates melt and a metallic core forms.

"We know from previous Dawn studies that there must have been interactions between water and rock inside Ceres," said Carol Raymond, a co-author and Dawn's deputy principal investigator based at JPL. "That, combined with the new density structure, tells us that Ceres experienced a complex thermal history."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Dawn at JPL
Asteroid and Comet Mission News, Science and Technology






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
IRON AND ICE
The Case of the Missing Ceres Craters
Pasadena CA (JPL) Jul 28, 2016
Ceres is covered in countless small, young craters, but none are larger than 175 miles (280 kilometers) in diameter. To scientists, this is a huge mystery, given that the dwarf planet must have been hit by numerous large asteroids during its 4.5 billion-year lifetime. Where did all the large craters go? A new study in the journal Nature Communications explores this puzzle of Ceres' missing ... read more


IRON AND ICE
Study shows heat dangers of inflatable bounce houses

Search for 20 feared dead after India bridge collapse

False megaquake alert shakes Tokyo

Study highlights electric grids' vulnerabilities to extreme weather

IRON AND ICE
GPS jamming: Keeping ships on the 'strait' and narrow

China's satnav industry grows 29 pct in 2015

Twinkle, Twinkle, GPS

Like humans, lowly cockroach uses a GPS to get around, scientists find

IRON AND ICE
Tracking down the first chefs

Population boom preceded early farming

The great evolutionary smoke out: An advantage for modern humans

Volunteers chew bones to help identify marks of earliest human chefs

IRON AND ICE
Long term bacteria experiment still evolving after 30 years

Dwindling prey bad news for big cats, wolves

India appeals for help for baby rhinos rescued in floods

Researchers identify how queen bees repress workers' fertility

IRON AND ICE
'Elephantiasis' virus may boost AIDS risk: study

21 infected in far north Russia anthrax outbreak

Boy dies, dozens hospitalised in far northern Russian anthrax outbreak

Could the deadly mosquito-borne yellow fever virus cause a Zika-like epidemic in the Americas?

IRON AND ICE
China activist jailed for more than seven years

Hong Kong student leader blasted in China govt video

China jails rights lawyer for seven years: Xinhua

Riders on the plateau: Tibetans gather for horse festival

IRON AND ICE
Indonesia frees vessel captured by suspected pirates: navy

IRON AND ICE
Japan approves huge stimulus for sluggish economy

HSBC profits plunge as Brexit uncertainty bites

China new home prices rise faster in July

Bank hacks raise fears for financial sector









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.