Medical and Hospital News  
ENERGY TECH
Why bioelectrodes for energy conversion are not stable
by Staff Writers
Bochum, Germany (SPX) May 29, 2018

illustration only

Researchers at the Ruhr-Universitat Bochum have discovered why bioelectrodes containing the photosynthesis protein complex photosystem I are not stable in the long term. Such electrodes could be useful for converting light energy into chemical energy in an environmentally friendly way.

However, the proteins, which are stable in nature, are not functional in semi-artificial systems in the long term because reactive molecules are formed that damage the photosystem I.

The team around Dr Fangyuan Zhao, Dr Felipe Conzuelo and Prof Dr Wolfgang Schuhmann from the Centre for Electrochemical Sciences together with colleagues from the Bochum Chair of Plant Biochemistry describes the results in the journal Nature Communications.

Promising technology: Bioelectrodes
Felipe Conzuelo describes the background of the research project: "Society faces the great challenge of having to find more sustainable ways of converting and storing energy." Here it is important to understand the processes that currently still limit the lifetime of promising techniques. "Because this is the only way to develop stable solutions in the future," Fangyuan Zhao adds.

Promising techniques include electrodes in which the photosystem I is embedded in an osmium-containing polymer. When the photosynthetic protein is activated by light, it can separate positive and negative charges very efficiently. This charge gradient can serve as a source of energy, so to speak, and drive further processes.

Reactive oxygen species limit lifetime
"The photosystem I not only works efficiently, but also occurs in nature in large quantities, which makes it interesting for semi-artificial systems for energy conversion", explains Felipe Conzuelo. However, if the bioelectrode operates in an oxygen-containing environment, it suffers damage in the long term.

The scientists from Bochum used so-called scanning electrochemical microscopy to observe the processes on the electrode surface. On this surface, the photosystem I is embedded in an osmium-containing polymer. They observed which molecules are formed on the electrode surface when it is exposed to light. To do this, they exposed the system to different oxygen concentrations.

It was found that irradiation with light produced reactive oxygen species and hydrogen peroxide, which can damage the photosystem I in the long term. "Based on our results, it seems advisable to design bioelectrodes with photosystem I so that they can operate in an oxygen-free environment", Conzuelo concludes.

Research paper


Related Links
Ruhr-University Bochum
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ENERGY TECH
Polymer crystals hold key to record-breaking energy transport
Bristol UK (SPX) May 25, 2018
Scientists from the universities of Bristol and Cambridge have found a way to create polymeric semiconductor nanostructures that absorb light and transport its energy further than previously observed. This could pave the way for more flexible and more efficient solar cells and photodetectors. The researchers, whose work appears in the journal Science, say their findings could be a "game changer" by allowing the energy from sunlight absorbed in these materials to be captured and used more eff ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
China floods to hit US economy: Climate effects through trade chains

'Our families would be killed': Rohingya brace for monsoon

Navy captain accused in deadly Tunisia migrant boat sinking

Arkema's Texas plant unprepared for Harvey floods, inquiry finds

ENERGY TECH
China to launch two BeiDou-2 backup satellites

China to launch another 11 BeiDou-3 satellites in 2018

Research shows how 'navigational hazards' in metro maps confuse travelers

UK set to demand EU repayment in Brexit satellite row

ENERGY TECH
Chimpanzee calls differ according to context

Prehistoric people also likely disrupted by environmental change

'Uniquely human' muscles have been discovered in apes

Trait tied to autism may explain emergence of realistic art

ENERGY TECH
How coyotes conquered the continent

Bolivia's Madidi National Park is most biodiverse in the world

Montana State laser technology could help Yellowstone battle invasive trout

Giant invasive flatworms found in France, French territories

ENERGY TECH
Could we predict the next Ebola outbreak by tracking the migratory patterns of bats?

Limiting global warming could avoid millions of dengue fever cases

Deadly malaria's evolution revealed

New portable malaria screening instrument developed

ENERGY TECH
Chinese police handling of teacher protest sparks fury; Merkel met wives of jailed China lawyers

Hundreds march in Hong Kong to mark Tiananmen crackdown

China jails Tibetan-language advocate for 5 years

A shipwreck and an 800-year-old 'made in China' label reveal lost history

ENERGY TECH
Three Mexican soldiers killed in ambush

US targets Chinese fentanyl 'kingpin' with sanctions

Singaporean guilty of sophisticated exam cheating plot

S. Korea deploys warship to Ghana after pirates kidnap sailors

ENERGY TECH








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.