Medical and Hospital News  
ICE WORLD
Wintertime Arctic Sea Ice Growth Slows Long-term Decline: NASA
by Maria-Jose Vinas for GSFC News
Greenbelt MD (SPX) Dec 07, 2018

A lone Arctic sea ice floe, observed during the Beaufort Gyre Exploration Project in October 2014.

New NASA research has found that increases in the rate at which Arctic sea ice grows in the winter may have partially slowed down the decline of the Arctic sea ice cover.

As temperatures in the Arctic have warmed at double the pace of the rest of the planet, the expanse of frozen seawater that blankets the Arctic Ocean and neighboring seas has shrunk and thinned over the past three decades. The end-of-summer Arctic sea ice extent has almost halved since the early 1980s. A recent NASA study found that since 1958, the Arctic sea ice cover has lost on average around two-thirds of its thickness and now 70 percent of the sea ice cap is made of seasonal ice, or ice that forms and melts within a single year.

But at the same time that sea ice is vanishing quicker than it has ever been observed in the satellite record, it is also thickening at a faster rate during winter. This increase in growth rate might last for decades, a new study accepted for publication in Geophysical Research Letters found.

This does not mean that the ice cover is recovering, though. Just delaying its demise.

"This increase in the amount of sea ice growing in winter doesn't overcome the large increase in melting we've observed in recent decades," said Alek Petty, a sea ice scientist at NASA's Goddard Space Flight Center in Greenbelt, Maryland, and lead author of the study. "Overall, thickness is decreasing. Arctic sea ice is still very much in decline across all seasons and is projected to continue its decline over the coming decades. "

Petty and his team used climate models and observations of sea ice thickness from the European Space Agency's CryoSat-2 satellite to explore sea ice growth variability across the Arctic. The climate model results compared well both with CryoSat-2's measurements and the results of another commonly used Arctic sea ice model, giving the authors confidence in the climate model's ability to capture Arctic sea ice variability.

"The global climate model seems to do a good job of capturing the Arctic sea ice state and shows that most of the thickness change in the central Arctic is from thermodynamics, that is, ice formation and ice melt, although around the Arctic sea ice edge dynamics, which is ice transport, can play a bigger role," Petty said.

These model simulations showed that in the 1980s, when Arctic sea ice was on average 6.6 feet thick in October, about 3.3 extra feet of ice would form over the winter. That rate of growth has increased and may continue to do so for several more decades in some regions of the Arctic; in the coming decades, we could have an ice pack that would on average be only around 3.3 feet thick in October, but could experience up to 5 feet of ice growth over the winter.

It seems counterintuitive: how does a weakening ice cover manage to grow at a faster rate during the winter than it did when the Arctic was colder and the ice was thicker and stronger?

"Our findings highlight some resilience of the Arctic sea ice cover," Petty said. "If we didn't have this negative feedback, the ice would be declining even faster than it currently is. Unfortunately, the positive feedback loop of summer ice melt and increased solar absorption associated with summer ice melting still appears to be dominant and continue to drive overall sea ice declines."

Nonetheless, the increased rate of sea ice thickening in winter has other implications. As ice forms at the ocean surface, it releases a lot of the salty and dense water from which it originated, which sinks and increases the mixing of waters in the upper ocean. The more ice formation that takes place, the more mixing we expect to see in the upper ocean. Increases in this ice formation and mixing during winter may help mitigate the strong freshening of the Arctic Ocean's surface waters that has been observed in recent decades due to increased summer melt.

"This is altering the seasonal balance and the salinity distribution of the upper ocean in the Arctic; it's changing when we have fresh water, when we have salty water and how deep and seasonal that upper oceanic mixed layer is," Petty said. "And that's all going to mean that local micro-organisms and ecosystems have to adapt to these rapidly evolving conditions."

Petty's projections found that, by the middle of the century, the strong increases in atmospheric and oceanic temperatures will outweigh the mechanism that allows ice to regrow faster, and the Arctic sea ice cover will decline further. The study predicted that the switch will happen once the sea ice is less than 1.6 feet thick at the beginning of winter, or its concentration -the percentage of an area that is covered in sea ice- is less than 50 percent.

"This negative feedback mechanism increasing ice growth is unlikely to be sufficient in preventing an ice-free Arctic this century," Petty and his colleagues concluded.


Related Links
IceBridge at NASA
Beyond the Ice Age


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ICE WORLD
Earth's polar regions communicate via oceanic 'postcards,' atmospheric 'text messages'
Corvallis OR (SPX) Dec 03, 2018
Scientists have documented a two-part climatic connection between the North Atlantic Ocean and Antarctica, a fast atmospheric channel and a much slower oceanic one, that caused rapid changes in climate during the last ice age - and may again. In a new study published this week in Nature, an international team of scientists describe how extremely abrupt climate change events 60,000 to 12,000 years ago came from the repeated strengthening and weakening of an oceanic current that warms Greenland and ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ICE WORLD
Nobel peace prize shines light on rape in conflict

Papua massacre shines light on forgotten conflict

Black Forest sanctuary for IS-abused Yazidi women

'Sold by my brother': the Mekong women pressed into marriage in China

ICE WORLD
First Lockheed Martin-Built GPS III satellite encapsulated for Dec. 18 launch

UK will build its own satellite-navigation system after Brexit

Beijing's space navigation BeiDou program seeks to dethrone US-owned GPS platform

China expands use of BeiDou navigation system in transportation

ICE WORLD
100 marathons, 100 days: A punishing run for water

Human-altered environments benefit the same cosmopolitan species all over the world

Great apes and ravens plan without thinking

Breakthroughs Inspire Hope for Treating Intractable Mood Disorders

ICE WORLD
Study considers how climate change, shifting winds will impact migratory birds

Study shows how catnip synthesizes chemical that drives cats wild

Hummingbirds thrive at innovative Mexico gardens

Malaysia torches 2.8 tonnes of African pangolin scales

ICE WORLD
An ancient strain of plague may have led to the decline of Neolithic Europeans

China confirms first swine fever cases in Beijing

Researchers a step closer to understanding how deadly bird flu virus takes hold in humans

'Very serious': African swine fever spreads in China

ICE WORLD
China cracks down on unofficial Christian church

Thousands of Myanmar women forced into marriage in China: study

EU should worry about Huawei, other Chinese firms: official

Hong Kong democrats 'furious' over new election ban

ICE WORLD
ICE WORLD








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.