Medical and Hospital News
CHIP TECH
World's first logical quantum processor
Published in Nature, the work was performed in collaboration with Markus Greiner, the George Vasmer Leverett Professor of Physics; colleagues from MIT; and Boston-based QuEra Computing, a company founded on technology from Harvard labs. Harvard's Office of Technology Development recently entered into a licensing agreement with QuEra for a patent portfolio based on innovations developed in Lukin's group.
World's first logical quantum processor
by Staff Writers
Boston MA (SPX) Dec 11, 2023

In quantum computing, a quantum bit or "qubit" is one unit of information, just like a binary bit in classical computing. For more than two decades, physicists and engineers have shown the world that quantum computing is, in principle, possible by manipulating quantum particles - be they atoms, ions or photons - to create physical qubits.

But successfully exploiting the weirdness of quantum mechanics for computation is more complicated than simply amassing a large-enough number of physical qubits, which are inherently unstable and prone to collapse out of their quantum states.

The real coins of the realm in useful quantum computing are so-called logical qubits: bundles of redundant, error-corrected physical qubits, which can store information for use in a quantum algorithm. Creating logical qubits as controllable units - like classical bits - has been a fundamental obstacle for the field, and it's generally accepted that until quantum computers can run reliably on logical qubits, technologies can't really take off. To date, the best computing systems have demonstrated one or two logical qubits, and one quantum gate operation - akin to just one unit of code - between them.

A Harvard team led by Mikhail Lukin, the Joshua and Beth Friedman University Professor in physics and co-director of the Harvard Quantum Initiative, has realized a key milestone in the quest for stable, scalable quantum computing. For the first time, the team has created a programmable, logical quantum processor, capable of encoding up to 48 logical qubits, and executing hundreds of logical gate operations. Their system is the first demonstration of large-scale algorithm execution on an error-corrected quantum computer, heralding the advent of early fault-tolerant, or reliably uninterrupted, quantum computation.

Published in Nature, the work was performed in collaboration with Markus Greiner, the George Vasmer Leverett Professor of Physics; colleagues from MIT; and Boston-based QuEra Computing, a company founded on technology from Harvard labs. Harvard's Office of Technology Development recently entered into a licensing agreement with QuEra for a patent portfolio based on innovations developed in Lukin's group.

Lukin described the achievement as a possible inflection point akin to the early days in the field of artificial intelligence: the ideas of quantum error correction and fault tolerance, long theorized, are starting to bear fruit.

"I think this is one of the moments in which it is clear that something very special is coming," Lukin said. "Although there are still challenges ahead, we expect that this new advance will greatly accelerate the progress towards large-scale, useful quantum computers."

The breakthrough builds on several years of work on a quantum computing architecture known as a neutral atom array, pioneered in Lukin's lab and now being commercialized by QuEra. The key components of the system are a block of ultra-cold, suspended rubidium atoms, in which the atoms - the system's physical qubits - can move about and be connected into pairs - or "entangled" - mid-computation. Entangled pairs of atoms form gates, which are units of computing power. Previously, the team had demonstrated low error rates in their entangling operations, proving the reliability of their neutral atom array system.

"This breakthrough is a tour de force of quantum engineering and design," said Denise Caldwell, acting assistant director of the National Science Foundation's Mathematical and Physical Sciences Directorate, which supported the research through NSF's Physics Frontiers Centers and Quantum Leap Challenge Institutes programs. "The team has not only accelerated the development of quantum information processing by using neutral atoms, but opened a new door to explorations of large-scale logical qubit devices which could enable transformative benefits for science and society as a whole."

With their logical quantum processor, the researchers now demonstrate parallel, multiplexed control of an entire patch of logical qubits, using lasers. This result is more efficient and scalable than having to control individual physical qubits.

"We are trying to mark a transition in the field, toward starting to test algorithms with error-corrected qubits instead of physical ones, and enabling a path toward larger devices," said paper first author Dolev Bluvstein, a Griffin School of Arts and Sciences Ph.D. student in Lukin's lab.

The team will continue to work toward demonstrating more types of operations on their 48 logical qubits, and to configure their system to run continuously, as opposed to manual cycling as it does now.

Research Report:Logical quantum processor based on reconfigurable atom arrays

Related Links
Harvard University
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
CHIP TECH
Self-Assembled Bowtie Resonators Achieve Atomic-Scale Miniaturization
Berlin, Germany (SPX) Dec 07, 2023
In the realm of quantum optics and photonics, the quest to enhance the interaction between light and matter has taken a significant step forward with the development of self-assembled photonic cavities at atomic-scale confinement. These remarkable structures, resembling bowties, have the potential to revolutionize various fields, from electronics to quantum technologies. Researchers at DTU Electro, led by Associate Professor Soren Stobbe, have published their groundbreaking findings in a recent pa ... read more

CHIP TECH
Got to have faith: religion finds its moment at COP28

Three months after quake, Morocco villages face winter chill

US pledges climate aid for cities, more private sector finance

Planet tipping points pose 'unprecedented' threat to humanity: report

CHIP TECH
Airbus presents first flight model structure for Galileo Second Generation

Galileo Gen2 satellite production commences at Airbus facility

Galileo Second Generation satellite aces first hardware tests

PASSport project testing

CHIP TECH
New Archaeological Discoveries Shed Light on Austronesian Migration

Fishing chimpanzees found to enjoy termites as a seasonal treat

Good neighbors: Bonobo study offers clues into early human alliances

How "blue" and "green" appeared in a language that didn't have words for them

CHIP TECH
Green turtles fight to survive against Pakistan's urban sprawl

Wellington welcomes first wild-born kiwi chicks in a century

Hard to bear: UK's only pandas return to China

Electrosensitivity in Dolphins: A Novel Sensory Ability Unveiled

CHIP TECH
Cholera claims 23 lives in Ethiopia: charity

Climate change could upturn world malaria fight: WHO

Suffering from flu, Pope Francis cancels COP28 trip

Study: Climate change making vampire bats with rabies migrate toward U.S.

CHIP TECH
Freedom and dignity: Millennial Chinese leave China for Thailand

Canada expands probe of Asia multi-lateral bank

Hong Kong holds first 'patriots only' local elections

Hong Kong man charged for wearing 'seditious' shirt

CHIP TECH
Bitzlato founder pleads guilty to running 'criminal' US crypto exchange

US detained five who boarded tanker off Yemen: Pentagon

The fallen kings of crypto

US removes Chinese lab from sanctions in fentanyl crackdown deal

CHIP TECH
Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.