Medical and Hospital News
STELLAR CHEMISTRY
X-ray mission lifts off to study high-energy Universe
File illustration of XRISM.
X-ray mission lifts off to study high-energy Universe
by Staff Writers
Tanegashima, Japan (ESA) Sep 07, 2023

The Japan Aerospace Exploration Agency's (JAXA) X-Ray Imaging and Spectroscopy Mission (XRISM) lifted off on a H-IIA rocket from the Tanegashima Space Center in Japan at 08:42 JST / 00:42 BST / 01:42 CEST on 7 September 2023. The successful launch marks the beginning of an ambitious mission to explore the growth of galaxy clusters, the chemical make-up of the Universe, and the extremes of spacetime.

XRISM is a collaboration between JAXA and NASA, with significant participation from ESA.

"I would like to extend my congratulations to JAXA for this successful launch," says Carole Mundell, ESA's Director of Science. "I wish the mission team the best of luck getting XRISM to its operating orbit around Earth and preparing it for science observations."

ESA and European institutions contributed scientific guidance and vital technologies to XRISM, including for the scientific instruments and for the systems that keep XRISM pointing and oriented correctly. In return for these contributions, ESA will be allocated 8% of XRISM's available observing time. This will enable European scientists to propose cosmic targets to observe in X-ray light and make breakthroughs in this area of astronomy.

Matteo Guainazzi, ESA XRISM project scientist says: "ESA already has a strong legacy and presence in high energy astronomy. Our XMM-Newton and Integral missions have been studying the Universe in X-rays and gamma-rays for over two decades, and we are currently planning the Athena mission. With this experience, we have been able to make important contributions to what we expect will be a very productive XRISM mission."

Whilst XMM-Newton remains an excellent observer of lower-energy X-rays, XRISM has been optimised to observe large diffuse structure in the cosmos (such as galaxy clusters), with an unprecedented ability to distinguish the 'colours' of higher-energy X-ray light. By combining observations from the two observatories, we will have complementary measurements that reveal a more complete picture of the hot and energetic Universe. Astronomers that request observing time with XRISM may in the future be offered observing time on XMM-Newton.

Looking further ahead, XRISM will lay the path for ESA's Athena mission, currently under study and set to be the largest X-ray observatory ever built. XRISM will provide the first high-resolution spectroscopy X-ray measurements of objects in the nearby Universe; Athena will build upon these discoveries to observe more distant objects, at the epoch when the largest gravitationally bound structure in the Universe formed, or when the first super-massive black holes at the centres of galaxies became active. XRISM's first-of-its-kind Resolve instrument will act as an important technology demonstrator for Athena.

Matteo adds: "As ESA project scientist, I am thrilled by all the exciting science promised by XRISM. As a researcher I am personally looking forward to accurately measuring the physical properties of outflows from super-massive black holes at the centres of galaxies, and discovering how they regulate the formation of stars within that galaxy."

Once XRISM reaches its operating orbit 550 km above Earth's surface, scientists and engineers will begin a ten-month phase of testing and calibrating the spacecraft's scientific instruments and verifying the science performance of the mission. XRISM will then spend at least three years observing the most energetic objects and events in the cosmos based on proposals elaborated by scientists all over the world.

Related Links
X-Ray Imaging and Spectroscopy Mission (XRISM)
Stellar Chemistry, The Universe And All Within It

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
STELLAR CHEMISTRY
New X-ray Detectors to Provide Unprecedented Vision of the Invisible Universe
Washington DC (SPX) Aug 30, 2023
Very detailed information is now available from ultraviolet, optical, and submillimeter observations of the stellar, dust, and cold gas content of galaxies, and yet there is a dearth of understanding about the mechanisms that formed these galaxies. To truly understand how galaxies form, X-ray observations from high energy resolution imaging spectrometers are needed to see the cores of the galaxies themselves. New large-area, high-angular-resolution, imaging X-ray spectrometers will expose the esse ... read more

STELLAR CHEMISTRY
Iran pilgrims among 18 dead in Iraq crash

Minorities more likely than White people to live behind subpar levies

Ten dead in northern China gas leak

Exodus begins at drenched Burning Man party in US desert

STELLAR CHEMISTRY
Present and future of satellite navigation

New Galileo station goes on duty

Potential earthquake precursor discovered through GPS measurements

Northrop Grumman's new airborne navigation system achieves successful flight test

STELLAR CHEMISTRY
Hong Kong's top court rules to recognise same-sex partnerships

New ancient ape from Turkiye challenges the story of human origins

ALS patient pioneering brain-computer connection

The race to link our brains to computers is hotting up

STELLAR CHEMISTRY
Belgium struggles with spread of 'invasive' raccoons

World losing high-stakes fight against alien species

Cute but calamitous: Australia labours under rabbit numbers

S.African rhino farm, world's largest, bought by NGO: statement

STELLAR CHEMISTRY
Pharma firm, labs share tech for Covid research equity: WHO

US widens blacklist of firms over Uyghur forced labor concerns

Ancient pathogens emerging from melting ice and permafrost risk eroding ecosystems

Croatia targets latest climate-change threat: mosquitoes

STELLAR CHEMISTRY
Australia PM Albanese confirms visit to China 'later this year'

Great Wall of shame: two held after smashing hole in China landmark

Biden's Vietnam trip aimed at reining in China

Chinese flock to Mongolia hoping for papal visit of their own

STELLAR CHEMISTRY
Report faults British government for 'dismal understanding' of Wagner threat

China tells Myanmar junta to 'root out' online scam groups

STELLAR CHEMISTRY
Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.